
PROJECT FOUR
SSA DATA RETRIEVAL

Alister David
alisterdavid03@gmail.com

Abstract
This document focuses on the design, development, testing and deployment of the SSA

data retrieval feature within the existing dashboard application. Building on the previously
implemented SSA data capture functionality, this project aims to enhance the usability
and analytical capabilities of the dashboard by enabling users to retrieve and visualise

historical SSA data. The key objective is to create an intuitive and user-friendly interface
that allows users to select specific time periods and apply various filters to view the SSA

data in a detailed waterfall plot.

Contents
The Task: ...4
Feasibility Study: ...5

Scope Definition: ..5
Technical Feasibility: ..6

Requirement Analysis:...10
User Story:...11
Design: ..12

System Architecture Design: ..12
Activity Diagram : ...12
ER Diagram:...14
Pseudo Code: ..14
UI Component Design :..16

Development: ..17
Creating a SSA history Section: ...17
Creating an SSA history type: ..19
Updating SSAStreamHistory.tsx: ...20
Initial back-end implementation of data retrieval:...29
Testing the GetSSAHistory function: ..31

Test 1: Down Sampling ...31
Test 2: Threshold Filtering...32
Test 3: Down Sampling & Threshold Filtering...33
Test 4: No Filters...33

Creating a SSA history route:...34
Issues with the history route:..36
Updating the UI and restructuring the history options: ...39
Connecting the front end to the back end: ...44
Formatting the filtered SSA data: ...46
Getting filtered data into the UI: ...50
Adding stream Id to the database: ...52
Updating the HistoryData type: ..53
Enabling the use of both static and relative time:...56
Adding a react circular progress element to indicate data retrieval:57
Using integer for time instead of string:..59

1

Implementing the HistoryCapture type:..61
Displaying the SSA data on a waterfall plot: ..63
Implementing Alerts for Data Retrieval Feedback..66
Enabling display of the selected frequency:...71
Filtering SSA data by highest and lowest power levels on the capture graph........73
Retrieving all unique device Ids from the database: ..79
GetDeviceandStream function: ..81
Displaying unique device Ids and stream Ids from the ssa_metrics database table:.
84
Refetching Devices and Streams on Time Range Update:....................................87
Displaying Alerts for No Devices Found:..87
Updating the HistoryCapture type: ...88
Updating the GetSSAHistory.ts file: ...88
Updating the SSAStreamHistory.tsx file:..91
Finalising SSA history capture feature: ..94
Fixing getting ssa_metrics table error: ...94
Fixing waterfall data useState: ...94
Displaying waterfall plot chronologically:..95
Fixing maximum update depth exceeded error:...95
Tidying up code: ...96

Testing: ..97
Unit Testing: ...97

GetSSAHistory.ts: ...97
GetDeviceandStream.ts:...109
SSAStreamHistory.ts:..112

Integration Testing:...124
UI Component Interaction...124
Database Integration ..125
API Endpoints ...126
Data Visualisation ...127
Error Handling...128

Performance Testing: ...129
Test Scenario 1: Basic Data Retrieval Performance...133
Test Scenario 2: High Data Volume Retrieval...134
Test Scenario 3: Filtered Data Retrieval ...134

2

Performance Test Evaluation: ...135
Deployment: ..136
Communication with Non-Technical Stakeholders ..138
Maintenance:...139

Bux Fixes: ..140
Updating the capture view graph label: ..140
Infinite loop error in the UI: ...142
Including static time: ...144

Conclusion:..145

3

The Task:
The task for project 4 involves enhancing the functionality of the dashboard interface
at IQHQ by implementing features to retrieve, filter, and visualise historical SSA data.
This project aims to build upon the previously developed SSA data capture
functionality by allowing users to access and analyse stored SSA data effectively.

Figure 1 - SSA data retrieval task set on teams.

4

Feasibility Study:
Scope Definition:
Objective:

 The primary objective is to create a new section on the dashboard where users can
select specific time periods from the SSA database and view the corresponding data
in a waterfall plot. Additionally, the task includes incorporating various filter options,
such as frequency range, power levels, and down sampling rates, to refine the data
selection and provide a more detailed and insightful analysis. This enhancement will
significantly improve the dashboard's utility, offering users a powerful tool to review
and interpret historical SSA data.

Specific Requirements:
• UI Development for SSA Data Retrieval:

▪ Design and implement a user-friendly interface on the dashboard where users
can interactively retrieve SSA data stored in the database.

• Data Retrieval from Database:

▪ Develop backend functionality to retrieve SSA data stored in a dedicated
database table based on user-defined time periods.

• Data Filtering Options:

▪ Down sampling: Implement down sampling functionality to reduce the
number of data points retrieved, allowing users to view summarised data over
larger time periods.

▪ Threshold Filtering: Enable filtering of SSA data based on power levels,
allowing users to focus on data points above specified power thresholds to
identify signals of interest.

• Visualisation Features:

▪ Waterfall Plot: Display retrieved SSA data in a waterfall plot format, providing
a comprehensive overview of frequency power levels over time.

▪ Graphical Representation: Present SSA data graphically in other formats as
needed, enhancing user understanding and analysis capabilities.

• Compatibility and Integration:

▪ Ensure seamless integration of the SSA data retrieval and visualisation
functionalities with existing features of the dashboard interface.

▪ Maintain consistency in user experience and workflow across different
dashboard modules.

• Scalability and Performance:

5

▪ Design the solution to handle potentially large datasets efficiently, ensuring
scalable performance even with increased data volume over time.

▪ Implement efficient data handling and retrieval mechanisms to support long-
term retrieval of SSA data.

Technical Feasibility:
Database Structure and Management:

▪ Assess compatibility of the existing PostgreSQL database with the
requirements for retrieving SSA data.

▪ Design the schema for efficient retrieval of large volumes of power and
frequency level data.

Relational & Non-relational Databases:

In assessing the technical feasibility of implementing the SSA data retrieval feature in
the dashboard interface, it is essential to consider the principles and uses of
relational and non-relational databases.

Relational Database (PostgreSQL):

▪ PostgreSQL, our chosen relational database management system, aligns with
the principles of relational databases.

▪ It organises data into structured tables with predefined schemas, ensuring
data integrity and consistency.

Non-relational Database Considerations:

▪ While non-relational databases offer advantages in handling unstructured
data and scalability, we opted for PostgreSQL due to its structured data
requirements and familiarity.

▪ Non-relational databases, such as MongoDB or Cassandra, offer advantages
in handling unstructured or semi-structured data and scalability.

▪ However, for this project, the structured nature of database logs and the
existing familiarity with PostgreSQL favoured its selection over non-relational
alternatives.

I chose to use a relational database for this project due to its compatibility with the
structured nature of the data captured from the SSA device. Relational databases,
such as PostgreSQL, adhere to strict data integrity constraints, ensuring the
consistency and accuracy of information, a critical aspect in military applications
where precision is paramount. By organising data into structured tables with
predefined schemas, PostgreSQL facilitates efficient management of complex data
relationships, a feature particularly advantageous for handling diverse metrics from
the SSA device.

6

Moreover, PostgreSQL's robust SQL querying capabilities empower us to extract
actionable insights from the captured data. This querying power is essential for
informed decision-making in military operations, allowing us to analyse trends,
identify patterns, and extract valuable intelligence. Additionally, PostgreSQL offers
comprehensive security features, encompassing authentication, authorisation, and
encryption mechanisms. These security measures are indispensable for
safeguarding sensitive military data from unauthorised access or tampering,
ensuring the integrity and confidentiality of our data repository.

In summary, the combination of data integrity enforcement, structured schema
organisation, powerful querying capabilities, and robust security features positions
PostgreSQL as the ideal choice for managing the SSA data in our project. Its ability
to seamlessly handle the structured data streams while ensuring data integrity and
security aligns perfectly with the rigorous demands of military applications, thereby
making it a reliable foundation for our data management endeavours.

Integration with Frontend:

▪ Design and implement a complete UI for the retrieval of SSA data, including
filtering capabilities and time selection.

In ensuring the seamless integration of the SSA data retrieval feature with the
frontend dashboard interface, I will prioritise compatibility with React components.
Given that the entire dashboard frontend is constructed using React components,
the goal is to seamlessly incorporate the retrieval functionality within this existing
framework. React's component-based architecture aligns perfectly with the modular
nature of frontend development, enabling the creation of reusable and composable
UI elements. This modular approach not only enhances code reusability and
maintainability but also facilitates scalability as the dashboard interface evolves with
additional features.

React's virtual DOM and efficient rendering ensure smooth user interactions, crucial
for maintaining a seamless dashboard experience. Leveraging React's rich
ecosystem will streamline development and address challenges effectively. By using
React components, I aim to efficiently implement the retrieval feature while ensuring
compatibility, performance, and maintainability across the dashboard application.

Graph Display Using Chart.js and Waterfall Plot with HTML Canvas:

▪ Implement graphical representation of SSA data using Chart.js and HTML
canvas elements.

▪ Integrate Chart.js for dynamic and interactive data visualisation and user-
friendly graphs.

7

For displaying graphical representations of SSA data in the dashboard interface, I
have utilised two primary technologies: Chart.js for versatile charting capabilities and
HTML graphics canvas for creating waterfall plots.

Chart.js Integration:

Chart.js provides a powerful framework for rendering interactive charts within web
applications. Leveraging its intuitive API and extensive chart types, I implemented
dynamic graphs to visually represent SSA data trends. Chart.js supports various
chart types such as line charts, bar charts, and pie charts, allowing flexibility in
presenting various aspects of SSA data. Its responsiveness and built-in animations
enhance user interaction by visualising real-time data updates seamlessly.

Waterfall Plot with HTML Canvas:

In addition to Chart.js, I employed HTML canvas elements to generate waterfall
plots, a specialised graph type that displays data as a series of rising and falling
columns. This approach is particularly useful for visualising spectrum usage over
time, where the height of each column represents signal intensity or power levels. By
leveraging the low-level drawing capabilities of HTML canvas, I achieved precise
control over graphical elements, ensuring accurate representation of SSA data in a
format that is both informative and visually appealing.

Backend-Frontend Communication:

▪ Implement mechanisms for retrieval of SSA data from backend to frontend
based on the filter options set in the frontend.

Regarding the backend-frontend communication, the need for seamless interaction
between the two components is vital for displaying the SSA data graphically and
status updates in the frontend dashboard interface. To achieve this, I will implement
HTTP-based routes using the Express framework in Node.js. This approach offers
simplicity, versatility, and widespread adoption in web development, making it well-
suited for exchanging data between the frontend and backend components of our
application. By defining specific routes for sending filter options and getting the SSA
data, I will establish clear endpoints for frontend interaction, enabling seamless
integration of data retrieval into the dashboard interface. Through this backend-
frontend communication mechanism, users will have access to historic SSA data and
relevant insights, enhancing the overall usability and effectiveness of the dashboard
application.

Express simplifies the implementation of these routes with its concise and intuitive
syntax, allowing me to focus on core functionality rather than low-level networking
concerns. Overall, my choice of HTTP-based APIs and Express for backend-frontend
communication ensures robust, efficient, and scalable interaction between the

8

frontend and backend components, facilitating the seamless implementation of data
retrieval functionality in our application.

Backend Technology Stack:

▪ Assess the suitability of the backend technologies (e.g., Node.js, TypeScript)
for implementing the retrieval functionality.

▪ Determine if the chosen technologies support database connectivity and
database query for the retrieval of SSA data.

The backend technologies of Node.js and TypeScript are well-suited for
implementing the retrieval functionality in the project. With dedicated support for
database connectivity, evidenced by dependencies like pg for PostgreSQL
interaction, these technologies enable efficient retrieval of data. Additionally, Node.js
provides powerful file manipulation capabilities, complemented by TypeScript's type
safety and code maintainability advantages. The project's development environment,
featuring scripts for automatic server reloading and TypeScript execution, fosters a
conducive atmosphere for feature implementation and testing. Supported by
extensive community backing and a rich ecosystem, Node.js and TypeScript offer
ample resources for backend development tasks, ensuring the successful integration
of the retrieval feature.

Error Handling and Logging:

▪ Develop error handling mechanisms to manage exceptions and ensure
continuous data retrieval.

▪ Implement logging functionalities to track data retrieval activities and support
troubleshooting and auditing.

To ensure the reliability of SSA data retrieval, robust error handling mechanisms will
be developed to effectively manage exceptions and errors that may arise during the
data retrieval process. These mechanisms will include thorough error detection and
recovery procedures, designed to handle scenarios such as database query failures,
network interruptions, or data parsing errors. By implementing proactive error
management strategies, the system will minimise downtime and maintain
uninterrupted access to critical SSA data, essential for real-time analysis and
operational decision-making.

Scalability and Future Enhancements:

▪ Ensure the system is scalable to handle future growth in data volume and
user demand.

9

To ensure robust scalability in SSA data retrieval, the architecture will be
meticulously designed to accommodate anticipated increases in data volume and
user demand. This entails employing scalable technologies and adopting best
practices for database management. Strategies will include optimising database
performance, implementing efficient indexing strategies, and considering horizontal
scaling options to handle larger datasets seamlessly. By proactively addressing
scalability concerns, the system will maintain optimal performance levels, ensuring
uninterrupted access to critical SSA data as operational demands evolve.

Requirement Analysis:
Background:

The SSA Data Retrieval project aims to enhance the functionality of the dashboard
interface by enabling users to select specific time periods from the database
containing SSA data. This data will be visualised in the form of a waterfall plot, with
additional filter options to refine the displayed data. The project builds upon previous
work on SSA data capture, leveraging technologies like Chart.js for graphical
representation and ensuring seamless integration with the existing React-based
dashboard interface.

Functional Requirements:

1. UI Development for SSA Data Retrieval: Develop a user interface that
allows users to select specific time periods from the database containing SSA
data and apply filters such as down sampling and power threshold filtering.

2. Backend Development: Implement backend logic to efficiently retrieve SSA
data from the PostgreSQL database, ensuring optimal performance and data
integrity.

3. Graphical Representation: Integrate Chart.js library to visually represent
SSA data in real-time using several types of charts such as line charts and bar
charts, providing users with clear graphical insights.

4. Waterfall Plot Implementation: Utilise the HTML graphics canvas element to
create interactive waterfall plots, enabling users to visualise spectrum data
over time with detailed frequency and power levels.

5. Compatibility and Integration: Ensure seamless integration of the SSA data
retrieval feature with the existing React-based dashboard interface,
maintaining consistency in user experience and interface design.

6. Error Handling and Logging: Develop robust error handling mechanisms to
manage exceptions, ensure continuous data capture, and implement logging

10

functionalities to track data capture activities and support troubleshooting and
auditing.

Non-functional Requirements:

1. Performance: Ensure that the SSA data retrieval process and graphical
rendering are responsive and performant, even under high data load
conditions, to provide users with real-time updates and smooth interaction.

2. Scalability: Design the system architecture to scale efficiently with increasing
data volume and user demands, supporting future growth without
compromising performance or usability.

3. Reliability: Develop comprehensive error handling mechanisms to manage
exceptions and ensure continuous operation of the SSA data retrieval feature,
backed by logging functionalities for troubleshooting and auditing purposes.

4. Usability: Design an intuitive and user-friendly interface for the SSA data
retrieval feature, incorporating clear navigation, informative tooltips, and
contextual help to guide users effectively.

5. Maintainability: Document the system architecture, codebase, and
deployment procedures thoroughly to facilitate ease of maintenance and
future enhancements, adhering to coding standards and best practices.

User Story:
Title: Retrieve and Display Historic SSA Data

As a dashboard user, I want to retrieve SSA data based on a specified time period,
view it on both a waterfall plot and a graph, and have the ability to apply filters for
detailed analysis.

Acceptance Criteria:

1. There should be a dedicated section in the dashboard interface specifically for
viewing historic SSA data.

2. Provide a dropdown menu listing available devices to select from for retrieving
SSA data.

3. Offer a dropdown menu to choose the specific stream from which SSA data
will be retrieved.

4. Include filter options such as down sampling by a factor and threshold filtering
by power level to refine the displayed SSA data.

5. Upon setting the desired options and clicking "Update," the relevant SSA data
should be displayed as a waterfall plot in the designated section.

11

6. When switching to the capture section, the SSA data should be visualised in a
graph format for easy comparison and analysis.

7. If no SSA data matches the selected options, the system should notify the
user accordingly to indicate that no data is available.

8. Errors encountered during data retrieval should be handled gracefully, with
clear and meaningful error messages displayed to guide the user and
facilitate troubleshooting.

This user story outlines the need for retrieving and displaying SSA data and specifies
the expected behaviour and outcome when using this feature

Design:
System Architecture Design:
Below is the system architecture design, which provides an overview of the
underlying structure and components of the application. This diagram illustrates the
arrangement of frontend and backend elements, showcasing how they interact to
facilitate the seamless capture, storage, and display of live data from the SSA
device.

Figure 2 - System architecture design of the dashboard application.

Activity Diagram :
The activity diagram provided illustrates the process flow involved in retrieving and
displaying data from the SSA database within the application. With three swim lanes
representing the user, Dashboard Application, and Backend components, it
highlights the sequential steps initiated when the user interacts with the update

12

button. This diagram offers stakeholders a clear depiction of the interactions and
handoffs between different system elements, enhancing understanding of the data
retrieval process and its integration within the application architecture.

Figure 3 - Activity diagram of the data retrieval process.

13

ER Diagram:
The ER (Entity-Relationship) diagram presented here offers a concise visual
representation of the database schema specifically tailored for this project. It
showcases the structure of the database table responsible for storing SSA metrics.
This focused diagram provides stakeholders with a clear understanding of the data
model underpinning the SSA data retrieval mechanism, facilitating better
comprehension of the system architecture and database design choices.

Figure 4 - Entity relation table for the ssa_metrics table.

Pseudo Code:
Included within the design documentation is pseudocode, serving as a clear
roadmap for implementing various system functionalities. Pseudocode outlines the
logical flow of features independently of specific programming languages or
frameworks. By detailing key actions and decision points, it ensures stakeholders
share a collective understanding of system behaviour. This aids collaboration among
developers, facilitating discussion and design refinement before actual
implementation. Pseudocode offers a concise outline of the steps involved,
promoting clarity and efficiency in the development process.

Pseudo Code for retrieving the SSA data:

14

Figure 5 - Pseudo code to retrieve SSA data from the database.

Pseudo Code for applying the filters:

Figure 6 - Pseudo code for the filters and applying them.

15

UI Component Design :

Figure 7 - Proposed SSA data retrieval UI.

16

Update
button

Filter
options

Streams
drop down

Devices
drop down

New spectrum
history section

Figure 8 - Proposed data retrieval UI when no data is found.

Development:
Creating a SSA history Section:
I decided to first develop a separate section for the data retrieval feature. Since it
was directly related to the SSA component of the dashboard, I determined it would
be best to place the SSA history section within the SSA content, below the Spectrum
Stream feature. The Spectrum Stream section is used to stream live SSA data and
includes options to set the stream parameters, view the waterfall plot, and display
the frequency vs. power graph.

Recognising that the SSA history section would have a similar layout to the
Spectrum Stream, I duplicated the ‘SSAStreamView.tsx’ file and renamed the
duplicate to ‘SSAStreamHistory.tsx’. This approach leverages code reusability,
ensuring efficiency and consistency across the application. By reusing existing code,
I minimised development time and reduced the potential for introducing new bugs, as
the duplicated code had already been tested and validated.

Next, I needed to connect the SSA history section to the dashboard. I located the
‘App.tsx’ file, which is responsible for the overall layout and routing of the dashboard.
Within this file, I found the section defining the SSA routes in the sidebar. I added a
route for SSAStreamHistory to this section, ensuring that users can navigate to the
SSA history view from the dashboard sidebar.

17

N
NO

No data found error

Figure 9 - Spectrum stream section on the dashboard.

Figure 10 - Spectrum History section on the dashboard.

18

Figure 11 - App.tsx file.

Creating an SSA history type:
To ensure clarity and consistency in the parameters needed for the SSA history
section, I decided to create a dedicated type for the SSA history options. By defining
a clear type, I established a guide for the parameters required to develop the UI for
the spectrum history section and provided a clear specification for the expected data
to be sent and received.

In the shared directory, where other types are stored for access by both the frontend
and backend, I created a file named ‘SSAHistoryOpts.ts’. In this file, I defined the
SSAHistoryOpts type with the following parameters:

▪ deviceId: A number that filters SSA data from the database by the selected
device.

▪ startDate: A string representing the start date to retrieve SSA data from a specific
time period.

19

▪ endDate: A string representing the end date for the data retrieval period.

▪ filters: An object used to identify the chosen filter.

▪ power: A number used if the threshold filter is chosen, to filter out SSA data
below the specified power level.

▪ factor: A number used if the down sampling filter is chosen, to reduce the SSA
data size by the specified factor.

By setting these parameters, the SSAHistoryOpts type provides a structured and
clear approach to managing the options required for SSA history retrieval, ensuring
that all necessary information is included and correctly formatted.

Figure 12 - SSAHistoryOpts type.

Updating SSAStreamHistory.tsx:
I decided to update the UI of the spectrum history section to make it specific to data
retrieval and to utilise the SSAHistoryOpts type. In the StreamOptsEditor function, I
removed all the old React text fields and drop-downs except for the device ID drop-
down. I then added a React select component to choose filter options, incorporating
checkboxes within the drop-down to allow the user to select multiple filters.
Additionally, I introduced two text fields, one for the power value and one for the
down sampling factor. The device ID drop-down and update button from the
spectrum stream were retained for reuse in this section.

20

Figure 13 - StreamOptsEditor function.

21

Figure 14 - React components to create the SSA history options.

22

Figure 15 - React components to create the SSA history options.

I replaced the default value property in StreamOptsEditor from StreamOpts to
SSAHistoryOpts and updated the useForm hook to use the new SSAHistoryOpts
type instead of the StreamOpts type. I also added useState hooks for each option to
enable value updates. By implementing a function called PowerFilterChange, I
managed the checkboxes and the corresponding text fields, enabling or disabling
them based on the selected filters.

23

Initially, I planned to add a React date picker component to select the start and end
dates. However, I realised I could use the existing date picker in the app toolbar
section of the dashboard, which has broader functionality. This date and time picker
offers two modes: static and relative. Users can either backtrack on SSA data
relative to the current time or choose specific start and end dates and times. To
access the date and time I can use the useComplexTimeRange function which
returns an object containing relative and static time in milliseconds, for now I am
focusing on relative time. By reusing this component, I not only accelerated
development but also maintained consistency across the application. This approach
minimised redundant code, reduced the risk of bugs, and ensured a unified user
experience, as updates to the date picker will automatically propagate throughout the
dashboard.

Figure 16 - Getting the start date/time and end date/time.

I created a function called formatTimestampToString which converts the Unix
timestamp into a database compatible timestamp.

Figure 17 - Function that converts Unix timestamp into a database compatible timestamp.

I then updated the StreamOptsView function, which loads and sets the history
options, to use the SSAHistoryOpts type. I created a function called getDefaultData
as a temporary fix for the StreamOptsView function, since it returns the
StreamOptsEditor which requires a default value. As the route had not yet been
made, no data was being passed through, so when there is no data, it uses the
values from the getDefaultData function.

24

Figure 18 - StreamOptsView function.

Figure 19 - Default values function.

To test how the waterfall plot data worked, I created some mock data by analysing
the data from the spectrum stream and matching its format. I then passed this mock
data through the makeData function, and the result of the makeData function is used
for the waterfall plot and the graph. The waterfall plot seemed to work, outputting a
single line of data each time the update button was clicked, but the graph did not
work. I need to conduct more research on the WaterfallDisplay and
SpectrumCaptureView functions to understand how each uses data to output
graphical data.

25

Figure 20 - SSAStreamHistory function.

26

Figure 21 - Return div of SSAHistory function.

Figure 22 - Spectrum History Dashboard UI.

27

Figure 23 - Spectrum history dashboard UI.

Figure 24 - Spectrum history log.

28

Initial back-end implementation of data retrieval:
I created a file called GetSSAHistory.ts and placed in the model’s directory which is
where the other back end SSA files are located. Within this file I created an async
function called GetSSAHistory which at the moment takes a promise of any. This
function returns SSA data from the database based on the given query. The query
selects power and frequency from the ssa_metrics table from the database using
deviceId and between the start time and end time. After testing this function and
logging the result, it was clear that the SSA data was being retrieved.

Figure 25 - GetSSAHistory function that returns filtered SSA data.

The next step was to create the filters, I began by working on the down sampling
filter. I created a function called downSampling which has two parameters, one being
data and another being a factor. The function iterated over the data but instead of
checking every item, it skips ahead by the specified factor each time. For each of
these skipped steps, it picks the current item and adds it to the new list. It then
returns a down sampled data set.

Figure 26 - downSampling function that down samples a data set by a given factor.

29

The thresholdFiltering function takes two parameters, data, and threshold. It contains
a list to store the new values of SSA data. This function iterates through the data set
and if the power is above the threshold, then it will be pushed to the new list. The list
containing the filtered data is returned.

Figure 27 - thresholdFiltering function that filters out power frequency pairs where the power is below the
threshold.

The applyFilters function processes a list of data by applying specified filters in
sequence. It accepts the original data, an array of filter names, a power threshold,
and a downsampling factor. It starts with the original data and iterates through the list
of filters. If a filter is 'Power Filter', it uses the thresholdFiltering function to keep only
items with a power value greater than the given threshold. If a filter is
'DownSampling', it uses the downSampling function to reduce the list by selecting
every nth item based on the provided factor. The function returns the data after all
specified filters have been applied. Now I can simply call on the applyFilters function
in my GetSSAHistory function to apply the filters chosen by the user.

Figure 28 - applyFilters function that applies the appropriate filters to SSA data.

To test that this function as well as the filters work, I logged the length of the raw data
and the filtered data to make sure the results were as expected. I could also
compare these results to the database, to ensure they are correct.

30

Testing the GetSSAHistory function:
I conducted tests to validate the GetSSAHistory function, ensuring it returns correctly
filtered SSA data from the database. Each test focused on a specific filtering option,
comparing the results against the raw data and the data from the database. Here are
the results:

Test 1: Down Sampling

Figure 29 - Test result of down sampling.

Figure 30 - Database query result of SSA data count.

Test Outcome: Success

31

Test 2: Threshold Filtering

Figure 31 - The result of threshold filtering.

Figure 32 - Database query result of SSA data count where power is above the threshold value .

Test Outcome: Success

32

Test 3: Down Sampling & Threshold Filtering

Figure 33 - The result of down sampling and threshold filtering.

Test Outcome: Success

Test 4: No Filters

Figure 34 - The result of applying no filters.

Test Outcome: Success

These initial tests confirm that the GetSSAHistory function operates correctly,
returning the expected results for each filtering option. The function effectively filters
SSA data as specified, ensuring reliability and accuracy in the data retrieval process.

33

Creating a SSA history route:
The final step for this initial implementation of the data retrieval process was to
establish to a route for the SSA history, enabling posting of spectrum history options
and retrieving the corresponding SSA data.

In the Route.ts file within the SSA directory, which contains routes for posting and
getting various SSA elements, I found the post route for the spectrum stream using /
stream. This route sends the streaming options and uses a GET request to receive
live SSA data from the spectrumStreamManager.

Seeing as though the spectrum stream and spectrum history functions in somewhat
a similar manner, I decided to create an identical route post and get for the spectrum
history. I used the route /history and replaced the post properties to suit the
SSAHistoryOpts.

Figure 35 - Spectrum history POST and GET.

Since the spectrum stream and spectrum history functions operate similarly, I
created identical routes for the spectrum history, using /history. I replaced the POST
properties to suit SSAHistoryOpts. The spectrum stream post used a function called
setStreamOpts from spectrumStreamManager.ts, and a corresponding
getStreamOpts function. I created similar functions for the spectrum history route,
named setHistoryOpts and getHistoryOpts.

34

Figure 36 - getHistoryOpts and setHistoryOpts function.

The spectrumStreamManager.ts file contained the SpectrumStreamManager class
which has a private property called currentOpts. This private property contained the
default values for the streaming options. I decided to create one for the history
options called currentHistoryOpts, where I set some default values for the spectrum
history options, as a test.

35

Figure 37 - Default values for spectrum history options.

I then added a custom hook, similar to the one found on SSAStreamView to post and
get a response from the route into the front end.

Figure 38 - useHTTPTrigger custom hook.

Issues with the history route:
During the development of the SSA data retrieval feature, I encountered a problem
with the history route that required the expertise of a senior software engineer. This
situation demonstrated the importance of clear and detailed communication with
technical colleagues.

After creating the POST route for the spectrum history, I encountered an error with
the body being passed to the setHistoryOpts function. The POST route was nearly
identical to the streaming route, differing only in the options properties. Despite this
similarity, the source of the error was unclear. I attempted to resolve the issue by
searching online resources, but I could not find a solution.

With the rest of the software team on a trial in America, I couldn't consult them
directly. My manager recommended using the Signal app to securely communicate

36

with my colleagues. This advice was particularly useful as it allowed for secure and
efficient communication despite the geographic separation.

Communication Process:

To effectively communicate the issue to my senior software engineer colleague, I
compiled a comprehensive document that included:

▪ Detailed Description of the Issue: I provided a clear explanation of the
problem, including the specific error message and the circumstances under
which it occurred.

▪ Relevant Code Snippets: I included the relevant portions of the code,
highlighting the sections that were identical to the streaming route and the
differences in the options properties.

▪ Steps Taken to Resolve the Issue: I outlined the steps I had already taken
to try to resolve the issue, including my attempts to find solutions online.

I sent this document via Signal, along with a brief description of the task I was
working on. This approach ensured that my colleague had all the necessary context
to understand the problem and could provide informed advice.

Figure 39 - Error in the history route POST.

37

Figure 40 - Signal chat screenshot. Figure 41 - Singal chat screenshot.

Thanks to the detailed information I provided, my colleague Reece quickly identified
the issue as a minor spelling mistake. This simple oversight had caused the error,
but without the fresh perspective and expertise of a senior engineer, it might have
taken much longer to diagnose.

Once the spelling mistake was corrected, the history options were posted and
received correctly, allowing me to proceed with the development of the feature.

Benefits of Using Signal for Technical Communication:

▪ Security: Signal's end-to-end encryption ensured that our communication
was secure, protecting sensitive project details.

▪ Efficiency: The ability to send detailed documents and code snippets allowed
for efficient troubleshooting and problem resolution.

▪ Collaboration: Despite being in different locations, we were able to
collaborate effectively, leveraging the instant messaging capabilities of Signal
to discuss and resolve the issue in real time.

In conclusion, the experience of resolving the history route issue highlighted the
importance of clear, detailed communication with technical stakeholders. By using
Signal to share comprehensive information, I was able to leverage my colleague's

38

expertise to quickly identify and fix the problem. This approach not only facilitated the
resolution of the issue but also reinforced the value of effective communication in
technical problem-solving.

Updating the UI and restructuring the history options:
To enhance the efficiency of tracking selected filters, I decided to switch from using
arrays to using boolean values. This adjustment would simplify the code by
eliminating the need for extensive array restructuring. Consequently, I opted to
replace the dropdown filter options with checkboxes, enabling users to select the
desired filters by ticking the corresponding boxes.

Figure 42 - Update spectrum history UI.

I began by removing the previously implemented React elements and starting fresh. I
introduced a checkbox labelled "Power Filter" and a corresponding text field labelled
"Power," allowing users to input a threshold value for filtering. Similarly, I added
another checkbox labelled "Down Sample" and a text field labelled "Factor," enabling
users to specify a down-sampling factor. To manage the state of these checkboxes, I
utilised the useState hook.

39

Figure 43 - useState to handle power filter and down sample check boxes.

Figure 44 - React check box and text field. Figure 45 - React check box and text field.

The history options were initially not being propagated through the program because
they were not included in the POST request within the route. To resolve this, I added
the history option properties to the dotrigger function, ensuring that each value is
sent when the update button is clicked.

40

Figure 46 - Added history option properties to the dotrigger function.

I then updated the SSAHistoryOpts type, replacing the array for filters with two new
boolean properties: powerFilter and downSampleFilter. Subsequently, I updated all
instances where SSAHistoryOpts was used throughout the codebase.

Figure 47 - Update applyFilters function.

41

Figure 48 - Updated SSAHistoryOpts type.

Figure 49 - Updated route.

42

Figure 50 - Updated GetSSAHistory function.

This restructuring and UI update streamlined the process of managing filter options,
enhancing both the user experience and the maintainability of the code.

43

Connecting the front end to the back end:
The next stage in the development process was to connect the front end to the back
end, ensuring that when the update button is clicked, it triggers the GetSSAHistory
function.

I started by creating a new route in the SSAStreamHistory file, /streamHistory, using
the useHTTPTrigger hook. This allows the front end to post history options so they
can be accessed in the back end. I then included all the history option values in the
onSubmit function, within the post to ensure they are sent when the update button is
clicked.

Figure 51 - useHTTPTrigger hook to post history options.

44

Figure 52 - Posting history options when the update button is clicked.

In the Route.ts file, I created a new POST route using the /streamHistory endpoint to
retrieve the filtered data. This route is similar to the initial history route POST but
differs in that it awaits and uses the GetSSAHistory function within the try block to
fetch the filtered data. With this update, the filtered SSA data gets logged in the back
end when the options are set and updated from the front end.

45

Figure 53 - streamHistory route.

This integration effectively links the user interface with the back-end logic, ensuring
that all the specified filter options are correctly applied and processed. The next step
is being able to access the filtered data in the front end from the back end.

Formatting the filtered SSA data:
To ensure the filtered SSA data is properly formatted before it is received on the front
end, I aimed to match the format expected by the existing makeData function. This
function is used to convert data for use by the waterfall and graph components. By
studying the SSAStreamView code, I determined that the data was of the type
SpectrumStreamsData, a nested dictionary where each stream ID maps to another
object containing frequency-power level pairs. I verified this format by logging the live
raw data received by the SSAStreamView function.

Figure 54 - SpectrumStreamsData type.

46

Figure 55 - Logging live raw SSA data.

Figure 56 - Live raw SSA data log.

I then created an identical nested dictionary object named HistoryStreamsData.
Since this type requires a stream ID, I added a stream ID property as a number to
the SSAHistoryOpts type and updated all instances where this type was used. For
the time being, I assigned a random number to the stream ID, as this option was not
yet configurable from the front end.

Figure 57 - Updated SSAHistoryOpts type.

47

Figure 58 - Adding streamId to post the history options.

In the GetSSAHistory function I added code to format the filtered data into the
HistoryStreamsData type. For each data point, it ensures that there is an object entry
for the specified streamId. Then, it adds an entry within that object where the key is
the frequency (as a string), and the value is the power. This results in a nested object
structure where each stream ID maps to an object of frequency-power pairs.

Figure 59 - Formatting filtered SSA data into the HistoryStreamsData type.

48

Figure 60 - GetSSAHistory function log.

This update ensures that the filtered SSA data is formatted correctly for seamless
integration with the front-end components, thereby maintaining consistency and ease
of data handling across the application.

49

Getting filtered data into the UI:
With the back-end processing of filtered data functioning correctly, the next logical
step is to integrate this data into the front end for display in the waterfall plot and
power frequency graph. Callum, a senior software engineer and the original
developer of the dashboard, provided guidance on how to accomplish this.

In the useHTTPTrigger hook, I added a response property in addition to post. I
passed in the parameters for the expected response (HistoryData) and the data
expected to be sent in the request body (SSAHistoryOpts).

I implemented the onComplete and onResponse callback functions passed through
the props object:

▪ The onComplete function is invoked upon successfully fetching the history data,
passing the resulting data back to the parent component.

▪ The onResponse callback handles any kind of response from the operations
within the component, such as errors or status messages, allowing the parent
component to appropriately react to those responses.

Figure 61 - Updated useHTTPTrigger hook and updated StreamOptsEditor function with callbacks.

When a response is received successfully the onResponse function is used to set
the data as a prop so that it can be accessed elsewhere. I removed the dotrigger
function from the handleSubmit method, which was part of the previous
useHTTPTrigger hook that is no longer in use. Consequently, I deleted the
StreamOptsView function, which was initially used to load and set the history
options.

50

Figure 62 - Updated handleSubmit method.

In the SSAStreamHistory function, I accessed the filtered data through the
onReponse function. After logging the data, I confirmed that the process was now
working correctly.

51

Figure 63 - Log from SSAStreamHistory function.

Adding stream Id to the database:
The stream Id is currently not part of the ssa_metrics table, therefore I updated the
SSAMetrics.ts file to include stream Id. I first updated the SSAMetric type to include
stream Id, then I consequently updated all the area where this type was being used. I
updated the createTableIfNotExists function to add stream Id as a INT. I was able to
access the stream Id from the WebSocketInterfacePacket type within the
insertSSAMetrics function. Finally, I dropped the old ssa_metrics table and run the
dashboard application to induce the creation of the updated table. This ensured that
stream Id was being added to the database when SSA data was being captured.

Figure 64 - Updated SSAMetric type. Figure 65 - Updated ssa_metrics table.

52

Figure 66 - Updated insertSSAMetrics function.

Updating the HistoryData type:
After a brief code review with Callum, we decided to use a more integrable format for
the filtered data to be incorporated with the waterfall plot and graphing function. The
HistoryData type which was previously called HistoryStreamsData was updated to
also use time within the nested structure.

Top-Level Object (HistoryData):
• The top-level object is a dictionary where the keys are stream Ids
• Each key maps to another object that represents time-based records.

Second-Level Object (Time Records):
• Each stream Id maps to an object where the keys are time values.
• Each time value key maps to another object that represents frequency-based

records.

Third-Level Object (Frequency Records):
• Each time value key maps to an object where the keys are frequency values.
• Each frequency value key maps to a power level.

53

Figure 67 - HistoryData type.

I added a function called formatFilteredData to the GetSSAHistory.ts file. This
function formats the filtered data into the HistoryData type.

Function Breakdown

1. Initialisation:
• count is initialised to keep track of the number of processed data entries.
• historyData is initialised as an empty object that will be populated with the

formatted data.

2. Iterating Over Filtered Data:
• The function loops through each object (row) in the filteredData array.

3. Extracting and Formatting Data:
• streamId is extracted and converted to an integer.
• time is extracted, converted to an ISO string, and formatted to exclude the

milliseconds and replace the 'T' with a space.
• frequency is extracted and converted to a string.
• power is extracted as-is.

4. Initialising Nested Structure:
• If historyData does not have an entry for the current streamId, it initialises

an empty object for that streamId.
• If the streamId entry does not have an entry for the current time, it

initialises an empty object for that time.

5. Populating the Data:
• The power value is assigned to the appropriate frequency key within the

time and streamId entries.
• The count is incremented to track the number of data points processed.

6. Logging and Returning the Result:
• The function logs the total number of data points formatted.

54

• The formatted historyData object is returned.

Figure 68 - Function that formats the filtered data into the historyData type.

I add time and stream Id to the database query to ensure the raw data returned time
and stream Id as well so that it can be used in the formatting function. I also updated
the query to order the data by time to ensure the data would be displayed in
chronological order. After running some tests this function is working as intended.
Now I can simply call on this function after applying the filters to format the data and
return it.

55

Figure 69 - Applying the formatFilteredData function.

Figure 70 - Logging formatted filtered data.

Enabling the use of both static and relative time:
At the moment only relative time is being used, meaning the user can choose to
track back from the current time. This would set the end date to the current time and
time. However, I want to enable to choose their own start date as well as end date.
The UI to do this already exists however I have not yet implemented it.

56

I am able to access both the static and relative time from the time picker UI using the
useComplexTimeRange function. The useComplexTimeRange function is a custom
hook that interacts with a TimeRangeContext to provide the current complex time
range, a method to update the time range, an optional method to undo the last
change. This custom hook abstracts the logic for managing complex time ranges,
making it easier to use within React components.

The timeRange variable is an array containing two elements. If the user chooses to
use relative time, then the first element of the array will contain the offset in
milliseconds, with the second elements offset being 0. If the user chooses to use
static time, then the first element will contain the start time in milliseconds and the
second element will contain the end time in milliseconds. I implemented a simple if
statement to check the type of timeRange and set the start date and end date.

Figure 71 - Finding start and end date using the timeRange variable.

Figure 72 - Date/time picker UI on the dashboard.

Adding a react circular progress element to indicate data
retrieval:
During the continuous testing phase of development, the absence of any indication
that data retrieval was in progress became a recurring annoyance. Given the
potentially large volume of SSA data, the retrieval process can take several seconds,

57

varying based on the options set. To address this issue, I decided to implement a
loading circle to visually indicate when data retrieval is underway. This addition not
only enhances user experience by providing feedback during data processing but
also eliminates uncertainty about whether a query has successfully returned any
SSA data.

I started by adding a useState variable called isSubmitting in the StreamOptsEditor
function to track whether the form is currently being submitted or is waiting for a
response. The useState was set to true within the handleSubmit method when the
update button is clicked. If a response is received and it is successful, the useState
is set to false. I imported the CircularProgress element from React and placed it next
to the update button.

Figure 73 - Implementing the isSubmitting useState.

To prevent multiple clicks on the update button, which could trigger multiple queries, I
used the isSubmitting useState to manage disabling and enabling the update button.

58

This approach ensures that while a submission is in progress, the update button is
disabled, preventing additional submissions until the current one is complete.

Figure 74 - CircularProgress react element.

Using integer for time instead of string:
Initially, dates were stored as strings, representing the actual date values. However,
this approach can lead to several issues, such as lack of type safety, parsing
complexity, and sorting inefficiencies. To mitigate these problems, I decided to store
time as milliseconds since the Unix epoch, keeping it as an integer. This method
offers several advantages:

▪ Improved Type Safety: Using integers to represent time ensures type safety,
reducing the risk of errors related to type mismatches and improving overall
code robustness.

▪ Simplified Parsing: Integers are straightforward to work with and do not
require complex parsing operations, unlike strings which need to be parsed
into date objects for manipulation and comparisons.

▪ Efficient Sorting: Sorting integers is inherently more efficient than sorting
date strings. This leads to better performance, especially when dealing with
large datasets.

59

▪ Consistency: Storing time as integers provides a consistent format across
different parts of the application, ensuring uniformity in data handling and
processing.

▪ Ease of Calculation: Performing arithmetic operations on integers is simpler
and faster, facilitating easy calculations for time differences, durations, and
comparisons.

Overall, using integers to represent time enhances the application's performance,
maintainability, and reliability.

To implement this change, I began by updating the SSAHistoryOpts type. I changed
the startDate and endDate data types to number. In the GetSSAHistory.ts file I added
a function called formatDate. This function converts milliseconds to a string date
value that can be used to perform the SQL query. I use the formatDate function in
the GetSSAHistory function to convert the date before querying.

Figure 75 - formatDate function used to convert milliseconds to a date string value.

In the StreamOptsEditor function within the SSAStreamHistory.tsx file I imported the
SimplifyRange custom function from the code base. This function uses the
timeRange variable to return the start date and end date since the epoch, whether
relative time or static time is used. I can then use the JavaScript getTime method to
convert the date into milliseconds. This has simplified the process of getting the start
and end date. Finally, I updated the route so that it expects the startDate and
endDate to be a number.

Figure 76 - Using the SimplifyRange function to extract start date and end date.

60

Implementing the HistoryCapture type:
After consulting with Callum, I had a much better Idea of how the waterfall graph is
displayed. On the SSA live streaming feature the WaterfallDisplay function outputs a
line of data which represents the captures within that second, then shifts the canvas
up so there is a continuous flow of the waterfall chart. Knowing this I had a better
understanding of how I could display the retrieved SSA data chronologically.

Figure 77 - Waterfall plot.

I started by defining a new type called HistoryCapture for the data sent to the front
end, replacing the old HistoryData type. The HistoryCapture type maps each stream
Id to an object containing an array of captures. Each capture includes a timestamp,
and an array of power levels, where each power level consists of a frequency and a
power value. With this data type it is much easier to manage, extract and display the
SSA data since each capture represents a line on the waterfall plot.

Figure 78 - HistoryCapure type.

I updated the formatFilteredData function in the GetSSAHistory.ts file, so that it
would format the filtered data into the HistoryCapture type. It takes in the filtered data
containing stream Id, time, frequency, and power. The function initialises an empty
object, historyCaptures, to store the formatted data.

It then iterates over each data object in the filteredData array. For each data object, it
checks if an entry for the given streamId exists in historyCaptures. If not, it creates a

61

Min Max FrequencyFrequency

new entry with an empty captures array. Next, it searches for a capture within the
current stream ID's captures array that matches the time property of the data object.
If such a capture is not found, it creates a new capture with the given time and an
empty powerLevels array, and then adds this new capture to the captures array.

The function then adds the frequency and power from the data object to the
powerLevels array of the corresponding capture. It also increments a counter, count,
to keep track of the number of processed data points. Finally, it logs the total number
of formatted data points and returns the formatted data.

Figure 79 - Updated formatFilteredData function.

62

Displaying the SSA data on a waterfall plot:
Now that I have the HistoryCapture type, I can extract the SSA data easily for
displaying the waterfall plot. I updated the WaterfallDisplay function in the
SSAStreamHistory.tsx file by setting the dataset parameter to use the
HistoryCapture type and restructuring how the waterfall is drawn.

Figure 80 - WaterfallDisplay function.

In the useEffect within the WaterfallDisplay function, the goal is to draw visual
representations of the SSA data onto an HTML canvas element. First, it references
the canvas element using useRef, and retrieves the 2D drawing context of the
canvas. If the context is successfully obtained, it then extracts the width and height
of the canvas.

For now, the function focuses on a specific stream within the dataset, identified by
the stream Id 99. Before proceeding, it clears the canvas to ensure no previous
drawings remain. If the canvas dimensions are invalid or the specified stream is
undefined, the function exits early.

Next, the function calculates the height of each sample by dividing the canvas width
by the number of captures in the current stream. It iterates over each capture in the
stream, determining the vertical position for each sample based on its index. For
each capture, it computes the minimum and maximum frequencies and calculates
the width of each frequency sample by dividing the canvas width by the number of
power levels in the capture.

For each power level within a capture, the function calculates the horizontal position
on the canvas by mapping the frequency value to a pixel position within the canvas
width. It then determines the colour corresponding to the power value using a helper
function and fills a rectangle at the computed position with the appropriate colour.

63

This process is repeated for all captures and power levels, effectively rendering a
visual representation of the dataset on the canvas.

Figure 81 - Code to draw the waterfall plot.

The function WaterfallPlot is used to display the selected frequency based on the
user’s cursor, the waterfall colour range which shows the frequency range and the
waterfall plot itself. Since I had restructures the WaterfallDisplay there were some
features which were now not working. There was a useEffect used to remove any
extreme spikes from the live streaming SSA data, however this is not needed since it
is vital to show the SSA data as is to keep data integrity. The selected frequency
finder had some errors; to test the waterfall plot I commented out any insignificant
bits of code in this function that caused errors.

I also had to disable the spectrum capture view tab which showed the graph since I
no longer had the makeData function that is used to format the data for the
SpectrumCaptureView function. After running some tests, I was glad to see that the
waterfall plot was successfully displaying.

64

Figure 82 - Waterfall plot on the dashboard.

Figure 83 - Waterfall plot on the dashboard.

65

Implementing Alerts for Data Retrieval Feedback
To enhance user feedback on the dashboard, I added two types of React Alerts: an
error alert and an info alert. The error alert notifies users when no data is found
based on their provided options, while the info alert displays the number of individual
power and frequency points retrieved. This implementation provides clear, immediate
feedback on the data retrieval process, improving the user experience.

1. Error Alert for No Data Found:

▪ Purpose: The error alert informs users when their query returns no data. This
helps users quickly identify and rectify any issues with their search criteria.

▪ Implementation: The alert is triggered when the data retrieval function
returns an empty dataset. It provides a clear message to the user, indicating
that no matching data was found for their specified options.

2. Info Alert for Data Retrieval Summary:

▪ Purpose: The info alert gives users a summary of the data retrieved,
including the length of the data and the number of individual power and
frequency points. This helps users understand the scope of the data retrieved
and ensures transparency in the data processing.

▪ Implementation: This alert is displayed upon successful data retrieval and
provides specific details about the dataset, such as the total number of data
points. This information can be useful for users to verify the
comprehensiveness of the data fetched.

I started by importing the alert element from React. In the SSAStreamHistory
function, I created a new useState called length to track the length of the retrieved
data. Within the onResponse callback, I added code to find the length of the
filteredData object, which is then assigned to length.

To ensure accurate feedback, I added a conditional statement to check the value of
length. If length is 0, a "No Data Available" alert is displayed. If length is greater than
0, an info alert is shown, displaying the length of the SSA data.

66

Initially, the "No Data Available" error was shown by default, even when the update
button had not been clicked. To fix this, I set the default value of length to -1,
ensuring that no alerts are displayed until the data retrieval process is triggered.

Figure 84 - useState to track the length of the retrieved SSA data.

Figure 85 - React alerts to display feedback from the data retrieval process.

67

Figure 86 - No data available, error alert.

Figure 87 - SSA data length, info alert.

By implementing these alerts, the dashboard provides a more informative and
responsive interface, helping users to better understand and interact with the data
retrieval process.

68

Implementing the Frequency Power Graph
My next focus was to display the capture graph, which shows the power level at
each frequency interval. This graph is crucial for identifying points of interest within a
known frequency range. The graph is displayed using the spectrumCaptureView
function, which utilises a dataset provided by the makeData function. I needed to
modify makeData to use the HistoryCapture type and return the same dataset format
expected by spectrumCaptureView.

Figure 88 - SpectrumCaptureView function.

In the new makeData function, I extracted all the powerLevels from all the captures
in the queried stream from the HistoryCapture object. These powerLevels were then
mapped to Chart.js data points and sorted by frequency. By ensuring the return
format matches the original makeData function, the spectrumCaptureView function
remains compatible.

69

Figure 89 - makeData function.

In the SSAStreamHistory function, I implemented the chartDataRef useRef. I applied
the makeData function on the filteredData from getSSAHistory and assigned the
return value to chartDataRef.current. I enabled the Capture tab and passed
chartDataRef.current to spectrumCaptureView to display the graph.

Figure 90 - chartDataRef useRef hook.

Figure 91 - Formatting the filtered data.

70

Figure 92 - Enabling the capture tab.

Enabling display of the selected frequency:
Enabling display of the selected frequency involved finding the minimum and
maximum frequency from the dataset, as well as determining the length of the data.
Given the wide range of frequencies in the dataset, I implemented code to retrieve
these values, which were then used to set the selectedFrequency_kHz variable in
the WaterfallPlot function.

To find the length of the dataset, I added code that loops through the dataset,
counting the total number of powerLevels, and assigning this count to the variable
length. I created two variables, max and min, initialised to negative infinity and
infinity, respectively. These variables track the highest and lowest frequency values
by comparing each frequency value against max and min. I implemented a loop that
iterates through each streamId in the data object, and for each powerLevel within
each capture of each streamId, the current power is compared to max and min,
updating these variables accordingly. After logging the results and comparing them
against the database, I verified that length, minimum frequency, and maximum
frequency were all calculated correctly.

71

Figure 93 - Code to find the maximum and minimum frequency values from the dataset.

Next, I uncommented the code used to find the selectedFrequency_kHz and updated
the minimum and maximum values. I also uncommented the typography element
used to display the selected frequency on the UI. With these changes, the selected
frequency was now displayed and updated with the user's cursor movement. The
WaterfallPlot function now includes the logic to find the dataset length, track
minimum and maximum frequencies, and calculate the selectedFrequency_kHz
based on cursor position. The selected frequency is displayed using a typography
element that updates dynamically with cursor movements, providing real-time
feedback to the user.

Figure 94 - Calculating the selected frequency based on cursor position.

72

Figure 95 - Displaying the selected frequency on the UI.

Figure 96 - Selected frequency based on cursor position being displayed.

Filtering SSA data by highest and lowest power levels on the
capture graph.
Currently the capture graph displays all the powerLevel pairs from the dataset. This
creates a clustered graph where each frequency has multiple power levels, creating
a messy and unusable graph. Considering the usage of the graph I thought it would
be useful for the user to be able to view the highest power level or lowest power level
for each frequency. This feature would work in conjunction with the power filter
option, the user can filter the SSA data based on a power level and then view the
highest or lowest power level where there are multiple power levels for a frequency
value.

73

Figure 97 - Capture graph displaying all SSA data.

To implement this feature, I began by creating two new functions in the
SSAStreamHistory.tsx file called highestPower and lowestPower. These functions
are similar to the makeData function with only difference being that they either return
the highest power levels or lowest power levels.

The highestPower function processes the HistoryCapture data to determine the
highest power level for each frequency across all captures within each stream. It
starts by converting the streams in the dataset into an array of entries. For each
stream, it extracts all power levels from its captures and uses a map to track the
highest power for each frequency. As it iterates over the power levels, it updates the
map if a higher power value is found for a frequency. After processing, the map is
converted back into an array of data points suitable for Chart.js, sorted by frequency.
Finally, the function returns an object structured for Chart.js, containing datasets for
each stream with corresponding highest power levels and appropriate styling.

74

Figure 98 - Function that returns the highest power level for each unique frequency from a dataset.

Similarly, the lowestPower function works the same but returns a dataset for each
stream with corresponding lowest power levels.

75

Figure 99 - Function that returns the lowest power level for each unique frequency from a dataset.

I decided to use react switches to allow the user to toggle on either the highest
power filter or lowest power filter. To track the state of the switch I added two new
useStates useHighestPower and useLowestPower. I then created a function called
handleResponse to set the length of the data for the alert and to display the correct
graph data based on the user’s selection.

76

Figure 100 - Function that handles the retrieved data response.

Finally, I imported the switch element from react and created two toggles within the
capture graph tab. One toggle was labelled ‘Highest Power Levels’ and the other
‘Lowest Power Levels.’ I ensured that only one switch could be enabled at a time. If
no switches are enabled that all the powerLevels are shown using the makeData
function.

77

Figure 101 - React switches to toggle highest and lowest power levels.

Figure 102 - Capture graph with the highest power level toggled.

78

Figure 103 - Capture graph with the lowest power level toggled.

Retrieving all unique device Ids from the database:
In line with the requirements, I wanted to ensure that users were able to query the
history SSA data using streamId. In the future intend to have multiple streams
running at once from a single device, therefore it is crucial that they are able to
isolate any one stream. I also realised a major flow with the current UI design. The
device drop down uses the DeviceSelect element which only shows the device that
the dashboard is currently connected too. I want to allow users to select any device
and stream from the database, so they can view specific SSA data. In order to
achieve this, I need to retrieve each unique device and stream from the database,
and display these in a device dropdown and stream dropdown.

I began by creating a function called getDevices which was temporarily placed in the
DataCaptureStats.ts file. This function queries the ssa_metrics table from the
database to return a list of the devices from the database table.

79

Figure 104 - Function that returns each unique devices from the ssa_metrics database table.

I then added a route GET using the route /devices. This route would return the
devices from the getDevices function.

Figure 105 - devices GET route.

In order to test the function, I logged the result in the index.ts file which would
execute tasks on startup. I added random devices to the database table to ensure
that all unique devices were being retrieved.

Figure 106 - Loggin the result of getDevices function.

80

Figure 107 - Inserting device Ids to test the getDevices function.

Figure 108 - Output of the getDevice function.

GetDeviceandStream function:
Now that I have a function to retrieve all the unique device IDs from the ssa_metrics
table, I decided to enhance it so that the function would also retrieve unique device
IDs and stream IDs within a specific time range. To achieve this, I started by creating
a new file called GetDeviceandStream.ts. Creating a new file for this functionality
was necessary to keep the code organised and modular.

I defined a type called deviceOptions that contains two arrays, one for devices and
one for streams. This type ensures that the return value of the function is structured
and clear.

81

Figure 109 - deviceOptions type.

I then added an asynchronous function called fetchDistinctValues which takes a
column name, start time, and end time as parameters and returns an array of
numbers. This function runs a database query to retrieve either the unique device
IDs or stream IDs between the specified start and end times from the ssa_metrics
table, based on the column name provided. To avoid errors due to mismatching
column names, I converted the column name to lowercase. Additionally, I handled
any potential errors that could arise from the query execution.

Figure 110 - Function to retrieve all unique devices and streams from the database.

Next, I created another asynchronous function called GetDeviceandStream that
returns the devices and streams using the deviceOptions type from the
fetchDistinctValues function. This function uses the previously defined
fetchDistinctValues function to get the necessary data. I then exported this function
so that it could be accessed in the route. This setup ensures that the function can be
easily utilised wherever needed in the application.

82

Figure 111 - Function that returns the devices and streams as an array.

Figure 112 - Logging the result of the GetDeviceandStream function.

83

Displaying unique device Ids and stream Ids from the
ssa_metrics database table:
To ensure the retrieved data could be filtered using stream Ids, I added stream Id to
the database query in the GetSSAHistory function.

Figure 113 - Updated database query.

To allow the user to select devices and streams from the database within a selected
time range, I needed to modify the SSA history UI. I began by updating the /devices
route to a POST route that requires a start date and end date. The route returns the
result of the GetDeviceandStream function if the HTTP status indicates success.

Figure 114 - Updates devices route.

In the StreamOptsEditor function, I added a useHTTPTrigger hook to retrieve the
devices and streams. I created a useState called myResult to track the result from
the route. When the update button is clicked, myResult is updated to retrieve the
correct data based on the start and end time selected by the user.

Figure 115 - useHTTPTrigger to access devices and streams list.

84

Figure 116 - Posting time and setting result.

I replaced the DeviceSelect custom element with a React MenuItem to create a
drop-down menu for the devices. The devices from the route are mapped onto the
MenuItem. I also created another MenuItem component for the stream Id drop down.

Figure 117 - React MenuItem to select device and stream.

85

After testing, both drop downs worked correctly, allowing the user to select a device
Id and stream Id from within a specific time range from the database. This
enhancement makes it easier to filter data.

Figure 118 - Dashboard with updated device drop down.

Figure 119 - Dashboard with stream drop down added.

86

Refetching Devices and Streams on Time Range Update:
Currently, the dashboard requires reloading each time a new time range is selected
to access the corresponding devices and streams, which is inconvenient for users.
To improve user experience, I implemented a refetch of the devices and streams
each time the time range is updated.

To achieve this, I created a variable called offset to track any changes in relative
time. Within my useEffect hook, I added a conditional statement to call fetchData if
offset was not a null value. This ensures devices and streams are refetched each
time the time value changes.

Figure 120 – Variable to track any change in time.

Figure 121 - Refetching devices and streams when time value changes.

Displaying Alerts for No Devices Found:
I added an alert to notify users when no devices are found for the selected time
range. The alert is displayed when the length of the device list is zero. This
implementation enhances usability by dynamically updating the available devices
and streams without requiring a page reload and providing feedback when no
devices are available for the selected time range.

Figure 122 - React alert to notify users when no device is found.

87

Updating the HistoryCapture type:
During this project, I was tasked with updating my previous project, the SSA data
capture process, to make it more efficient. Power and frequency were now being
stored in arrays rather than individual values, which will make querying the database
faster. Other advantages of this change include:

▪ Reduced Redundancy: Storing power and frequency in arrays eliminates the
need for repeated entries, thus reducing redundancy in the database.

▪ Improved Data Integrity: Grouping related data together ensures that power
and frequency values remain associated, enhancing data integrity.

▪ Optimised Storage: Using arrays optimises storage space by minimising the
overhead associated with storing individual records.

▪ Enhanced Query Performance: Array-based storage allows for more
efficient querying, as it reduces the number of database operations needed to
retrieve related values.

To accommodate this change, I had to rewire the insertion of the SSA data into the
database. This also necessitated updating the data retrieval process.

I began by updating the HistoryCapture type. I realised that streamId was not
necessary to include in this type. This is because the user can only choose a single
streamId on the dashboard; therefore, including streamId in the data that is sent
back is redundant since it can only be the streamId that was chosen by the user. As
a result, I removed the streamId property from HistoryCapture.

Figure 123 - Updated HistoryCapture type.

Updating the GetSSAHistory.ts file:
In the GetSSAHistory.ts file I updated the downSampling function, so that for each
row in the input data, it initialises an empty array to store the downsampled power
levels. It then iterates through the power levels of the row, selecting every factorth
element and adding it to the downsampled power levels array. It then returns a new
object containing the timestamp and the downsampled power levels. This process is
repeated for all rows in the input data. Finally, the function returns an object with a
single property, captures, which contains the array of downsampled data objects.

88

Figure 124 - Updated downSampling function.

Similarly, I updated the thresholdFiltering function so that for each row in the input
data, it creates a new array of power levels where each element is an object
containing the corresponding frequency and power from the row. It then filters this
array to include only those power levels where the power is greater than or equal to
the threshold value. After filtering, it returns a new object containing the timestamp
and the filtered power levels for the row. This process is applied to all rows in the
input data. Finally, the function returns an object with a single property, captures,
which contains the array of filtered data objects.

Figure 125 - Updated thresholdFiltering function.

89

I created a new function called formatData which transforms input data into the
HistoryCapture format. It processes each row of the input data, creating a new array
of objects where each object contains a timestamp and an array of power levels. For
each row, it converts the time property to a timestamp in milliseconds and maps the
power values to corresponding frequency-power pairs by iterating through the power
values and their indices. The function returns an object with a single property,
captures, which contains the array of formatted data objects.

Figure 126 - Updated formatData function.

I then updated the applyFilters function so that it would apply any filter that was
selected by the user. If no filters are chosen the retrieved data is formatted. The
functions downSampling and thresholdFiltering already format the filtered data.

Figure 127 - Updated applyFilters function.

I had to create a function to calculate the length of the raw SSA data called
getLength. This function calculates the total number of power values in the filtered
data. It initialises a counter, totalPowerValues, to zero. It then iterates through each
row of the filteredData. For each row, it retrieves the power array and checks if it
exists and is an array. If so, it increments the counter by the length of the power
array. After processing all rows, the function returns the total count of power values.

90

Figure 128 - Function that returns the length of raw SSA data.

I then created a function to calculate the length of the formatted SSA data called
getLengthOf. This function calculates the total number of power levels in a
HistoryCapture object. It initialises a counter, totalPowerValues, to zero. It then
iterates over each capture in the historyCapture.captures array. For each capture, it
adds the length of the powerLevels array to the counter. After processing all
captures, the function returns the total count of power levels. I can now reuse this
function in the front end to display to total number of power levels from the SSA data
retrieval process.

Figure 129 - Function that returns the length of a HistoryCapture object.

Updating the SSAStreamHistory.tsx file:
To accommodate for the updated HistoryCapture type, I had to restructure the
highestPower, lowestPower and makeData functions.

91

Figure 130 - Updated highestPower function.

Figure 131 - Updated lowestPower function.

92

Figure 132 - Updated makeData function.

In the WaterFallDisplay function, I was accessing the power levels from within a
dataset by calling on the streamId, however since the dataset does not contain a
streamId, I can just call on the dataset itself.

Figure 133 - Updated WaterFallDisplay function.

I reused the getLengthOf function to find the length of the SSA data, so that it can be
used to display the selected frequency in the WaterfallPlot function. I also used the
function so that the length of the SSA data can be displayed to the user on the UI.

Figure 134 - Reusing getLengthOf function.

Figure 135 - Reusing getLengthOf function.

93

Finalising SSA history capture feature:
With all the requirements for the SSA history capture feature now implemented, my
focus shifted to refining the codebase to enhance both readability and
maintainability. This final stage involved addressing minor bugs, ensuring proper
error handling, and optimising the code for clarity.

Fixing getting ssa_metrics table error:
One critical issue I encountered was related to the database table creation process.
Each time the ssa_metrics table was dropped, and the dashboard application was
restarted, an error would appear stating, "Error getting ssa_metric size: error:
relation 'ssa_metrics' does not exist." This error indicated that the table was not
being created as expected. Upon investigation, I discovered that the problem was
due to the order of operations in the index.ts file. The createTableIfNotExists
function, responsible for creating necessary tables, was being executed after
database information logging, which caused the table creation to be overlooked. By
reordering the operations to ensure that table creation occurred before any logging, I
resolved this issue and ensured that the ssa_metrics table was correctly created on
startup.

Figure 136 - Reordered the creation of tables and logging the database information.

Fixing waterfall data useState:
Another issue arose with the useState hook used to manage waterfall data. The
state was initially set to expect a HistoryCapture object, but when data retrieval was
incomplete or failed, it led to an error and caused the dashboard to display a blank
screen. To address this, I introduced a defaultWaterfall variable of the HistoryCapture
type, initialised with an empty captures list. By setting this variable as the default
state, I prevented errors related to mismatched data structures and improved the
robustness of the dashboard.

94

Figure 137 - Default waterfall data.

Figure 138 - Setting default waterfall data.

Displaying waterfall plot chronologically:
I also identified and corrected a problem with data chronology in the waterfall plot.
The plot was displaying data out of order because the database query was not
sorting the results correctly. I resolved this by updating the query to order results in
descending chronological order, which corrected the display issue and ensured that
data was presented accurately.

Figure 139 - Updating database query.

Fixing maximum update depth exceeded error:
During some brief testing I ran into an issue where the chrome page would crash
after displaying the waterfall plot. I inspected the console to see the following
warning was displayed multiple times: “SSAStreamHistory.tsx:531 Warning:
Maximum update depth exceeded. This can happen when a component calls
setState inside useEffect, but useEffect either does not have a dependency array, or
one of the dependencies changes on every render.” This issue was caused by an
infinite loop in the React component. This happens when a component continually
re-renders because of repetitive updates triggered by state changes or effects.

In my case, the problem arose because the useEffect hook was set to execute
whenever the offset value changed. However, the function responsible for fetching
data, fetchData, was recreated on every render, which meant that useEffect always
saw a new version of fetchData. This constant change in fetchData led to an infinite
loop as useEffect was repeatedly triggered, causing the "Maximum update depth
exceeded" error.

To fix the issue, I introduced a way to track the previous value of offset using a React
ref. This ref allowed us to compare the current offset value with the previous one.
With this comparison, I ensured that certain actions, like logging or fetching data,

95

only occurred when offset actually changed. Additionally, I used useCallback to
ensure that fetchData had a stable reference across renders, preventing
unnecessary updates that could trigger re-renders. This approach effectively stopped
the infinite loop by controlling when useEffect.

Figure 140 - Updated refetch of devices and streams from the database.

Tidying up code:
In addition to fixing bugs and optimising functionality, I devoted time to tidying up the
code. This involved removing redundant code, simplifying complex functions, and
improving overall code structure. Code readability is crucial as it makes the
codebase easier to understand and maintain, facilitating quicker debugging and
future enhancements. I also added comprehensive comments throughout the code,
making it easier for future developers (or myself) to grasp the logic and intent behind
the code. This practice not only aids in debugging but also ensures that the code
remains accessible and comprehensible for anyone who might work on it later.

In summary, these final refinements and enhancements were essential in ensuring
that the SSA history capture feature was not only functional but also maintainable
and easy to understand. This final stage of development was crucial in delivering a
reliable and efficient feature that meets user needs while maintaining high standards
of code quality.

96

Testing:
Unit Testing:
Unit testing involves testing individual units or components of code in isolation to
ensure they function correctly. It is a critical part of software development, helping
identify and address issues early. By testing units independently, I can maintain code
quality, promote good design practices, and ensure the reliability of the final product.
My approach to unit testing involves systematically reviewing each file that I have
modified or added and conducting thorough testing on the relevant components.

GetSSAHistory.ts:

downSampling():

Test Case 1: Valid Down-sampling Factor

Input:

Expected Output:

Description: Test the function with a valid down-sampling factor to ensure it
correctly down-samples the powerLevels array by taking every 2nd element.

Actual Output: The actual output was the same as the expected output.

Evaluation: This test case has passed.

Test Case 2: Down-sampling Factor of 1 (No Down-sampling)

97

Input:

Expected Output:

Description: Test the function with a down-sampling factor of 1 to ensure it returns
the original powerLevels array without any down-sampling.

Actual Output: The actual output was the same as the expected output.

Evaluation: This test case has passed.

Test Case 3: Down-sampling Factor Greater than Array Length

Input:

Expected Output:

Description: Test the function with a down-sampling factor greater than the length of
the powerLevels array to ensure it returns only the first element of each array.

98

Actual Output: The actual output was the same as the expected output.

Evaluation: This test case has passed.

Test Case 4: Empty powerLevels Array

Input:

Expected Output:

Description: Test the function with an empty powerLevels array to ensure it handles
the empty array correctly without errors.

Actual Output: The actual output was the same as the expected output.

Evaluation: This test case has passed.

thresholdFiltering():

Test Case 1: Valid Threshold Filtering

Input:

Expected Output:

99

Description: Test the function with a valid threshold value to ensure it correctly
filters the powerLevels array by retaining only those elements with power greater
than or equal to the threshold.

Actual Output: The actual output was the same as the expected output.

Evaluation: This test case has passed.

Test Case 2: Threshold Higher than All Power Levels

Input:

Expected Output:

Description: Test the function with a threshold value higher than all the power levels
in the array to ensure it returns an empty array for each capture.

Actual Output: The actual output was the same as the expected output.

Evaluation: This test case has passed.

Test Case 3: Threshold Lower than All Power Levels

Input:

100

Expected Output:

Description: Test the function with a threshold value lower than all the power levels
in the array to ensure it returns the original powerLevels array for each capture.

Actual Output: The actual output was the same as the expected output.

Evaluation: This test case has passed.

Test Case 4: Empty powerLevels Array

Input:

Expected Output:

Description: Test the function with an empty powerLevels array to ensure it handles
the empty array correctly without errors.

Actual Output: The actual output was the same as the expected output.

Evaluation: This test case has passed.

101

formatData():

Test Case 1: Valid Data Formatting

Input:

Expected Output:

Description: Test the function with valid data to ensure it correctly formats the time
and pairs the power and frequency values.

Actual Output: The actual output was the same as the expected output.

Evaluation: This test case has passed.

Test Case 2: Empty Data Array

Input:

Expected Output:

102

Description: Test the function with an empty data array to ensure it handles the
empty array correctly without errors.

Actual Output: The actual output was the same as the expected output.

Evaluation: This test case has passed.

Test Case 3: Data with Inconsistent Array Lengths

Input:

Expected Output:

Description: Test the function with data where the lengths of the power and
frequency arrays are not equal to ensure it only pairs values up to the shortest array
length.

Actual Output: The actual output was the same as the expected output.

Evaluation: This test case has passed.

Test Case 4: Data with Invalid Time Format

Input:

103

Expected Output:

Description: Test the function with an invalid time format to ensure it handles the
invalid time and returns NaN for the time value.

Actual Output: The actual output was the same as the expected output.

Evaluation: This test case has passed.

getLength():

Test Case 1: Valid SSA Data

Input:

Expected Output: 6

Description: Test the function with valid SSA data to ensure it correctly sums the
lengths of all power arrays.

Actual Output: The actual output was the same as the expected output.

Evaluation: This test case has passed.

Test Case 2: Empty SSA Data Array

104

Input:

Expected Output: 0

Description: Test the function with an empty SSA data array to ensure it handles the
empty array correctly and returns 0.

Actual Output: The actual output was the same as the expected output.

Evaluation: This test case has passed.

Test Case 3: SSA Data with Missing Power Arrays

Input:

Expected Output: 3

Description: Test the function with SSA data where some entries do not have power
arrays to ensure it correctly skips those entries.

Actual Output: The actual output was the same as the expected output.

Evaluation: This test case has passed.

Test Case 4: SSA Data with Non-Array Power Fields

Input:

Expected Output: 4

Description: Test the function with SSA data where some power fields are not
arrays to ensure it only counts the lengths of valid power arrays.

Actual Output: The actual output was the same as the expected output.

105

Evaluation: This test case has passed.

getLengthOf():

Test Case 1: Valid HistoryCapture Data

Input:

Expected Output: 3

Description: Test the function with valid HistoryCapture data to ensure it correctly
sums the lengths of all power levels arrays.

Actual Output: The actual output was the same as the expected output.

Evaluation: This test case has passed.

Test Case 2: Empty HistoryCapture Object

Input:

Expected Output: 0

Description: Test the function with an empty HistoryCapture object to ensure it
handles the empty captures array correctly and returns 0.

Actual Output: The actual output was the same as the expected output.

Evaluation: This test case has passed.

Test Case 3: HistoryCapture with Captures Missing Power Levels

Input:

106

Expected Output: 1

Description: Test the function with HistoryCapture data where some captures have
empty power levels arrays to ensure it correctly counts the lengths of the power
levels arrays.

Actual Output: The actual output was the same as the expected output.

Evaluation: This test case has passed.

Test Case 4: HistoryCapture with Mixed Power Levels Lengths

Input:

Expected Output: 5

Description: Test the function with HistoryCapture data containing captures with
varying lengths of power levels arrays to ensure it sums all lengths correctly.

Actual Output: The actual output was the same as the expected output.

Evaluation: This test case has passed.

GetSSAHistory():

Test Case 1: Valid Data Retrieval and Filtering

Input:

107

Expected Output: Filtered HistoryCapture object with data matching the specified
criteria

Description: Test the function with valid inputs to ensure it retrieves the data,
applies filters, and returns the filtered HistoryCapture object correctly.

Actual Output: Filtered HistoryCapture object that matches the specified criteria.

Evaluation: This test case has passed.

Test Case 2: No Filters Applied

Input:

Expected Output: Unfiltered HistoryCapture object with raw data matching the
specified criteria

Description: Test the function with no filters applied to ensure it retrieves the raw
data and returns it correctly without any modifications.

Actual Output: Raw HistoryCapture object with no filtering applied.

Evaluation: This test case has passed.

Test Case 3: Invalid Device or Stream ID

Input:

Expected Output: Empty HistoryCapture object (no data found)

108

Description: Test the function with invalid device and stream IDs to ensure it
handles cases where no data is found correctly and returns an empty HistoryCapture
object.

Actual Output: Empty HistoryCapture object with no captures.

Evaluation: This test case has passed.

Test Case 4: Error Handling

Input:

Expected Output: Error message logged; function returns undefined

Description: Test the function with invalid date inputs to ensure it handles errors
gracefully, logs the appropriate error message, and returns undefined.

Actual Output: Error message indicating failure to fetch data from database.

Evaluation: This test case has passed. Test Cases

GetDeviceandStream.ts:

fetchDistinctValues():

Test Case 1: Valid Column Name and Time Range

Input:

▪ columnName: "deviceId"

▪ startTime: 1672531200000 (January 1, 2023)

▪ endTime: 1672617600000 (January 2, 2023)

Expected Output: Array of unique device IDs from the specified time range.

Actual Output: Array of distinct device IDs, e.g., [101, 102, 103].

109

Description: This test case verifies that the function can correctly fetch distinct
values from a valid column within the specified time range.

Evaluation: This test case has passed as the function returned the expected array
of unique device IDs.

Test Case 2: Column Name with No Data in Time Range

Input:

▪ columnName: "streamId"

▪ startTime: 1672531200000 (January 1, 2023)

▪ endTime: 1672617600000 (January 2, 2023)

Expected Output: Empty array, as no stream IDs are present within the specified
time range.

Actual Output: [] (Empty array).

Description: This test case checks how the function handles cases where the
column has no entries within the given time range.

Evaluation: This test case has passed as the function correctly returned an empty
array when no data was available.

Test Case 3: Invalid Column Name

Input:

▪ columnName: "invalidColumn"

▪ startTime: 1672531200000 (January 1, 2023)

▪ endTime: 1672617600000 (January 2, 2023)

Expected Output: Error indicating an unexpected query result format.

Actual Output: Error message: "Unexpected query result format".

Description: This test case ensures that the function handles invalid column names
by throwing an appropriate error.

Evaluation: This test case has passed as the function correctly threw an error for an
invalid column name.

GetDevicesandStreams():

Test Case 1: Valid Time Range with Existing Devices and Streams

Input:

110

▪ startTime: 1672531200000 (January 1, 2023)

▪ endTime: 1672617600000 (January 2, 2023)

Expected Output:

▪ devices: [101, 102, 103]

▪ streams: [201, 202, 203]

Actual Output:

▪ devices: [101, 102, 103]

▪ streams: [201, 202, 203]

Description: This test case verifies that the function can correctly fetch and return
distinct device IDs and stream IDs for a valid time range where data is present.

Evaluation: This test case has passed as the function correctly returned the
expected arrays of device IDs and stream IDs.

Test Case 2: Time Range with No Data

Input:

▪ startTime: 1672531200000 (January 1, 2023)

▪ endTime: 1672617600000 (January 2, 2023)

Expected Output:

▪ devices: []

▪ streams: []

Actual Output:

▪ devices: []

▪ streams: []

Description: This test case checks how the function handles a time range where no
device IDs or stream IDs are available.

Evaluation: This test case has passed as the function correctly returned empty
arrays for both devices and streams.

Test Case 4: Error Handling

Input:

▪ startTime: 1672531200000 (January 1, 2023)

111

▪ endTime: 1672617600000 (January 2, 2023)

Expected Output: Error message logged, and the function handles it gracefully.

Actual Output: Error message logged: "Error fetching data from database: <error
details>", and function handles the error without crashing.

Description: This test case ensures that the function can handle errors gracefully,
such as when there is an issue with the database query.

Evaluation: This test case has passed as the function correctly handled the error,
logging an appropriate message.

SSAStreamHistory.ts:

highestPower():

Test Case 1: Valid Data with Multiple Frequencies

Input:

Expected Output:

112

Actual Output: The output matches the expected result, showing the highest power
level for each frequency, sorted by frequency.

Description: This test case checks that the function correctly calculates and returns
the highest power levels for multiple frequencies present in the data.

Evaluation: This test case has passed as the function returned the correct highest
power values and correctly formatted the chart data.

Test Case 2: Single Frequency with Multiple Power Levels

Input:

Expected Output:

113

Actual Output: The output matches the expected result, showing the highest power
level for the single frequency.

Description: This test case verifies that the function can handle a scenario where
there is only one frequency but multiple power levels.

Evaluation: This test case has passed as the function correctly identified the highest
power level for the frequency.

Test Case 3: No Power Levels in Data

Input:

Expected Output:

Actual Output: The output matches the expected result, with no data points
returned.

114

Description: This test case checks how the function handles cases where there are
no power levels available.

Evaluation: This test case has passed as the function correctly returned an empty
dataset for the chart.

Test Case 4: Data with Duplicate Frequencies

Input:

Expected Output:

115

Actual Output: The output matches the expected result, showing the highest power
level for the duplicate frequency.

Description: This test case verifies that the function correctly handles and selects
the highest power level when there are duplicate frequencies.

Evaluation: This test case has passed as the function correctly aggregated the
highest power level for the duplicate frequency.

lowestPower():

Test Case 1: Valid Data with Multiple Frequencies

Input:

116

Expected Output:

Actual Output: The output matches the expected result, showing the lowest power
level for each frequency, sorted by frequency.

Description: This test case checks that the function correctly calculates and returns
the lowest power levels for multiple frequencies present in the data.

Evaluation: This test case has passed as the function returned the correct lowest
power values and correctly formatted the chart data.

Test Case 2: Single Frequency with Multiple Power Levels

Input:

117

Expected Output:

Actual Output: The output matches the expected result, showing the lowest power
level for the single frequency.

Description: This test case verifies that the function can handle a scenario where
there is only one frequency but multiple power levels.

Evaluation: This test case has passed as the function correctly identified the lowest
power level for the frequency.

Test Case 3: No Power Levels in Data

Input:

118

Expected Output:

Actual Output: The output matches the expected result, with no data points
returned.

Description: This test case checks how the function handles cases where there are
no power levels available.

Evaluation: This test case has passed as the function correctly returned an empty
dataset for the chart.

Test Case 4: Data with Duplicate Frequencies

Input:

Expected Output:

119

Actual Output: The output matches the expected result, showing the lowest power
level for the duplicate frequency.

Description: This test case verifies that the function correctly handles and selects
the lowest power level when there are duplicate frequencies.

Evaluation: This test case has passed as the function correctly aggregated the
lowest power level for the duplicate frequency.

makeData():

Test Case 1: Valid Data with Multiple Frequencies

Input:

Expected Output:

120

Actual Output: The output matches the expected result, with all power levels
correctly extracted, mapped, and sorted by frequency.

Description: This test case checks that the function correctly formats data with
multiple frequencies and power levels into the Chart.js data format.

Evaluation: This test case has passed as the function correctly mapped and sorted
the power levels for the given frequencies.

Test Case 2: Single Capture with Multiple Power Levels

Input:

Expected Output:

121

Actual Output: The output matches the expected result, with power levels correctly
extracted, mapped, and sorted by frequency.

Description: This test case verifies that the function can handle a single capture
with multiple power levels.

Evaluation: This test case has passed as the function correctly formatted the power
levels for the given capture.

Test Case 3: Empty Captures Array

Input:

Expected Output:

Actual Output: The output matches the expected result, with no data points
returned.

Description: This test case checks how the function handles an empty captures
array.

122

Evaluation: This test case has passed as the function correctly returned an empty
dataset for the chart.

Test Case 4: Non-Sorted Frequencies

Input:

Expected Output:

Actual Output: The output matches the expected result, with power levels correctly
extracted, mapped, and sorted by frequency.

Description: This test case checks that the function correctly sorts power levels by
frequency even if they are not initially ordered.

123

Evaluation: This test case has passed as the function correctly sorted the power
levels by frequency.

Integration Testing:
Integration testing ensures that the various components of a system function
together as expected. In this section, I will validate the interaction and collaboration
between different modules, services, and layers of the application to ensure
seamless functionality across the entire system. This includes testing API endpoints,
frontend-backend interaction, database integration, external service integration, error
handling, cross-browser compatibility, security, and performance.

UI Component Interaction
Ensure that the UI components (such as buttons) behave as expected and trigger
the appropriate actions when clicked or interacted with.

Test Case 1: Time Period Selection

Description: Verify that selecting a specific time period retrieves the corresponding
SSA data. 
Steps:

1. Open the application UI.

2. Navigate to the SSA section.

3. Use the date picker to select a start and end date.

4. Click the "Update" button.

Expected Result: SSA data for the specified time period is retrieved and displayed
in the UI.  
Actual Result: SSA data for the specified time period is retrieved and displayed in
the UI. 
Evaluation: This test was a success.

Test Case 2: Down Sampling Filter Interaction

Description: Verify that applying the down sampling filter reduces the number of
data points displayed. 
Steps:

1. Open the application UI.

2. Navigate to the SSA section.

124

3. Select a time period and retrieve data.

4. Enable the down sampling filter and set a down sampling factor.

5. Click the "Apply Filters" button.

Expected Result: The number of data points displayed is reduced according to
the down sampling factor. 
Actual Result: The number of data points displayed was reduced according to
the down sampling factor. 
Evaluation: This test was a success.

Test Case 3: Threshold Filtering Interaction

Description: Verify that applying the power threshold filter displays only data points
above the specified threshold. 
Steps:

1. Open the application UI.

2. Navigate to the SSA section.

3. Select a time period and retrieve data.

4. Enable the power threshold filter and set a threshold value.

5. Click the "Apply Filters" button.

Expected Result: Only data points with power levels above the specified threshold
are displayed. 
Actual Result: Only data points with power levels above the specified threshold
were displayed. 
Evaluation: This test was a success.

Database Integration
Database integration testing validates the interaction between the application and
the database layer. These tests ensure that data is properly stored, retrieved, and
updated in the database according to the application's requirements. They also verify
the accuracy of database queries and transactions, ensuring data integrity and
reliability.

Test Case 1: Data Retrieval Verification

Description: Validate that SSA data is correctly retrieved from the database based
on the specified time period. 
Steps:

1. Select a time period in the UI.

125

2. Trigger data retrieval from the frontend.

3. Verify that the backend retrieves the correct data from the database.

4. Compare the retrieved data with the expected results from the database.

Expected Result: The database query returns the expected SSA data for the
specified time period. 
Actual Result: The database query returned the expected SSA data for the
specified time period. 
Evaluation: This test confirms that data retrieval from the database works correctly.

Test Case 2: Filtered Data Retrieval Verification

Description: Validate that applying filters (down sampling, power threshold)
retrieves and displays the correct data from the database. 
Steps:

1. Select a time period in the UI.

2. Enable and set the down sampling filter and power threshold filter.

3. Trigger data retrieval and apply filters from the frontend.

4. Verify that the backend retrieves and processes the filtered data correctly.

5. Compare the retrieved and filtered data with the expected results.

Expected Result: The filtered data retrieved from the database matches the applied
filter criteria. 
Actual Result: The filtered data retrieved from the database matched the applied
filter criteria. 
Evaluation: This test confirms that filtered data retrieval and processing works
correctly.

API Endpoints
API endpoint testing focuses on verifying the functionality and behaviour of backend
endpoints exposed by the application. These tests validate that the API endpoints
handle requests correctly, respond with the expected data or status codes, and
maintain proper error handling mechanisms.

Test Case 1: POST /devices Endpoint

Description: Verify that the endpoint for retrieving devices and streams (/devices)
responds correctly. 
Steps:

126

1. Send a POST request to the /devices endpoint with the start date and end
date in the request body.

Expected Result: The endpoint responds with a list of devices and streams
available in the database for the specified time period or an appropriate error status
code if there is an issue. 
Actual Result: The endpoint responded with the expected list of devices and
streams or an error status code. 
Evaluation: This test was a success.

Test Case 2: POST /streamHistory Endpoint

Description: Verify that the endpoint for retrieving filtered SSA history data (/
streamHistory) responds correctly. 
Steps:

1. Send a POST request to the /streamHistory endpoint with the device ID,
stream ID, start date, end date, power filter, down sampling filter, power
threshold, and down sampling factor in the request body.

Expected Result: The endpoint responds with the filtered SSA history data or an
appropriate error status code if there is an issue. 
Actual Result: The endpoint responded with the expected filtered SSA history data
or an error status code. 
Evaluation: This test was a success.

Data Visualisation
Data visualisation testing ensures that SSA data is correctly visualised in various
graphical formats, enhancing user understanding and analysis capabilities.

Test Case 1: Line Chart Visualisation

Description: Verify that SSA data is correctly displayed in a line chart. 
Steps:

1. Retrieve SSA data for a specified time period.

2. Display the data in a line chart using Chart.js.

Expected Result: The SSA data is correctly visualised in a line chart. 
Actual Result: The SSA data was correctly visualised in a line chart. 
Evaluation: This test was a success.

127

Test Case 2: Waterfall Plot Visualisation

Description: Verify that SSA data is correctly displayed in a waterfall plot. 
Steps:

1. Retrieve SSA data for a specified time period.

2. Display the data in a waterfall plot using the HTML graphics canvas element.

Expected Result: The SSA data is correctly visualised in a waterfall plot. 
Actual Result: The SSA data was correctly visualised in a waterfall plot. 
Evaluation: This test was a success.

Error Handling
Error handling tests verify how the application responds to unexpected scenarios
and errors. These tests ensure that appropriate error messages are displayed to
users, and that the application gracefully handles exceptions without compromising
overall system stability.

Test Case 1: Error Handling in POST /devices Endpoint

Description: Verify that appropriate error handling is in place when there is an error
retrieving devices and streams in the /devices endpoint. 
Steps:

1. Simulate an error condition in the backend logic that retrieves devices and
streams.

2. Send a POST request to the /devices endpoint with the start date and end
date in the request body.

Expected Result: The endpoint responds with a 400 Bad Request status code and
logs the error to the console. 
Actual Result: The endpoint responded with a 400 Bad Request status code and
logged the error as expected. 
Evaluation: This test was a success.

Test Case 2: Error Handling in POST /streamHistory Endpoint

Description: Verify that appropriate error handling is in place when there is an issue
retrieving filtered SSA history data in the /streamHistory endpoint. 
Steps:

1. Simulate an error condition in the backend logic that retrieves filtered SSA
history data.

128

2. Send a POST request to the /streamHistory endpoint with the device ID,
stream ID, start date, end date, power filter, down sampling filter, power
threshold, and down sampling factor in the request body.

Expected Result: The endpoint responds with a 400 Bad Request status code and
logs the error to the console. 
Actual Result: The endpoint responded with a 400 Bad Request status code and
logged the error as expected. 
Evaluation: This test was a success.

Performance Testing:
Performance testing evaluates the speed, responsiveness, and stability of the
application under various conditions. It aims to identify performance bottlenecks and
ensure the system can handle expected and peak loads efficiently. This phase of
testing is critical to verify that the SSA data retrieval, filtering, and visualisation
features operate smoothly, providing a seamless user experience even with large
datasets and multiple concurrent users.

Objective

The objective of performance testing for this project is to ensure that the SSA data
retrieval and visualisation functionalities on the dashboard interface at IQHQ meet
the required performance standards. Specifically, the goals are to evaluate the
responsiveness of the application when retrieving and displaying large volumes of
SSA data, identify and resolve any performance bottlenecks in the data retrieval and
filtering processes, ensure the system can handle high user loads without
degradation in performance, verify that the graphical rendering of SSA data is
smooth and efficient under various conditions, and validate the scalability of the
application to support future growth in data volume and user base.

Test Environment:

129

Hardware Specifications:

▪ Device Name: AID-085

▪ Processor: 12th Gen Intel(R) Core(TM) i5-1235U @ 1.30 GHz

▪ Installed RAM: 8.00 GB (7.64 GB usable)

▪ System Type: 64-bit operating system, x64-based processor

▪ Operating System: Windows 10 Pro, Version 22H2 (Build 19045.4170)

▪ Network: Wi-Fi 5 (802.11ac), Network band: 5 GHz

Database Management System:

▪ Database: PostgreSQL

▪ Management Tool: pgAdmin4

Network Configuration:

▪ SSID: N.E.R.D.

▪ Security Type: WPA2-Enterprise

▪ Network band: 5 GHz

▪ Network channel: 36

▪ Link speed (Receive/Transmit): 400/400 (Mbps)

▪ Manufacturer: Realtek Semiconductor Corp.

▪ Description: Realtek RTL8852BE WiFi 6 802.11ax PCIe Adapter

Performance Testing Details:

Software Dependencies:

▪ Node.js

▪ npm packages

▪ Docker

Browser Compatibility:

▪ Chrome

▪ Firefox

▪ Edge

Database Size and Schema:

▪ Current database size: 50 MB

130

▪ Schema:
• device_manager_group: Stores information about device manager

groups.
• devices: Contains details of devices registered in the system.
• file_event: Tracks events related to file operations.
• fusion_reports: Stores fusion reports generated by the system.
• local_device_info: Stores information specific to local devices.
• metrics: Stores general metrics data.
• number_metrics: Stores numeric metrics data.
• ssa_masks: Contains data related to SSA masks.
• ssa_metrics: Stores SSA metrics data.

Test Scenarios:

1. Basic Data Retrieval Performance

▪ Description: Test the system's performance when retrieving and displaying a
moderate amount of SSA data without any filters applied.

▪ Objective: Evaluate the baseline performance and responsiveness of the
system under typical usage conditions.

2. High Data Volume Retrieval

▪ Description: Test the system's performance when retrieving and displaying
large volume of SSA data.

▪ Objective: Assess how well the system handles and processes large
datasets, ensuring the application remains responsive and efficient.

3. Filtered Data Retrieval

▪ Description: Test the system's performance when applying power threshold
and down-sampling filters to SSA data retrieval.

▪ Objective: Evaluate the efficiency and responsiveness of the filtering
mechanisms under various conditions, ensuring that filtered data is retrieved
and displayed promptly.

Custom Testing Code:

131

Figure 141 - Custom code to measure the time taken for the retrieval process.

I added a startTime and endTime to the streamOptsEditor function to measure the
time taken to retrieve the SSA data. By placing the startTime before the post, I
ensure that I measure from when the user clicks the update button. Placing the end
time after a successful response is recognised ensures that the measurement ends
as soon as the data is received.

132

Figure 142 - Result of testing retrieval time of varying sizes of SSA data.

Test Scenario 1: Basic Data Retrieval Performance
Performance Metrics:

• Time Taken (s)

Testing Environment:

1. Ensure that the hardware and software dependencies are properly installed
and configured.

2. Set up the dashboard application, ensuring the builds have been successful
and the database ssa_metrics has been successfully created.

3. Navigate to the spectrum stream section on the side bar. Use the default
configuration in spectrum stream to capture data.

4. Navigate to the spectrum history section on the side bar. Select the time
range and apply no filters, then click the update button to log the retrieval
time.

Test Result:

The term "basic data retrieval time" can vary depending on the feature's usage.
Typically, users will not view hours of SSA data in one go but rather select a specific
time range to view. As observed, there was a linear relationship between the SSA
data size, and the time taken for retrieval. On average, the time taken increases by
approximately 1.26 seconds with each additional MB of data. These results align
with the requirements, confirming that the system performs well under typical usage
conditions. This test was a success.

Time Taken to Retrieve SSA Data by Size
Ti

m
e

Ta
ke

n
(s

)

0

17.5

35

52.5

70

SSA Data Size (MB)
0 5 10 15 20 25 30 35 40 45 50

133

Test Scenario 2: High Data Volume Retrieval
Performance Metrics:

• Time Taken (s)

Testing Environment:

1. Ensure that the hardware and software dependencies are properly installed
and configured.

2. Set up the dashboard application, ensuring the builds have been successful
and the database ssa_metrics has been successfully created.

3. Navigate to the spectrum stream section on the side bar. Use the default
configuration in spectrum stream to capture data.

4. Navigate to the spectrum history section on the side bar. Select the time
range and apply no filters, then click the update button to log the retrieval
time.

Test Result:

Due to limited resources and time, I was not able to test this scenario fully. However,
from the data collected, we can estimate the retrieval time for larger data volumes.
Using the graph, we predict that data volumes as large as 1GB would take
approximately 1300 seconds (or around 21.67 minutes). While these times are not
ideal, it is understandable that such large volumes of data require more time for
processing. Further optimisations can be explored to improve the retrieval process.
This test was a partial success.

Test Scenario 3: Filtered Data Retrieval
Performance Metrics:

• Time Taken (s)

Testing Environment:

1. Ensure that the hardware and software dependencies are properly installed
and configured.

2. Set up the dashboard application, ensuring the builds have been successful
and the database ssa_metrics has been successfully created.

3. Navigate to the spectrum stream section on the side bar. Use the default
configuration in spectrum stream to capture data.

4. Navigate to the spectrum history section on the side bar. Select the time
range and apply the default filters (Power Filter at -115 and Down Sample
filter at 100), then click the update button to log the retrieval time.

Test Result:

134

Applying filters significantly reduced the retrieval time. This is likely due to the fact
that filters reduce the data volume, making it quicker to post and retrieve the data to
the UI. With the default filters applied, the time taken to retrieve data was
approximately half of what it would be without any filters. This result was expected
and aligns with the system requirements, confirming the efficiency of the filtering
mechanisms. This test was a success.

Performance Test Evaluation:
The performance tests confirm that the system can reliably handle retrieving SSA
data under various conditions. Under normal conditions, the system performs well,
with an average retrieval time of approximately 1.26 seconds per 1MB of data. When
filters are applied, this retrieval time is significantly reduced, roughly halving the time
required due to the decreased data volume. Although higher data volumes, such as
several gigabytes, take considerably longer to retrieve, users are not expected to
view such large datasets at once but rather in sections for better analysis.

Further steps could be taken to enhance the retrieval process's efficiency. Currently,
all SSA data within the selected time range is retrieved, and then filters are applied
through functions. In the future, applying filters directly within the database query
could reduce the amount of data retrieved, thus shortening the retrieval time. By
refining the database queries to incorporate filtering, the system could significantly
improve performance, making the retrieval process faster and more efficient.

For the current requirements and demands of the system, the performance is
adequate. The system meets the necessary criteria for typical usage and handles
data retrieval efficiently under normal conditions. While there is room for
optimisation, especially for handling large data volumes more effectively, the existing
performance is sufficient for the intended use cases and user interactions.

135

Deployment:
For deployment to production, we utilise npm as our package manager and git for
version control. The deployment process involves several steps to ensure the
smooth transition of changes to the live environment.

Version Control with Git:

Each major change or feature addition undergoes version control using Git. This
involves staging and committing changes before pushing them to the server
repository.

Figure 143 - Dashboard git log.

136

Dashboard Install notes:

Linux installation

The dashboard can be installed on Linux with the provided .deb file. Simply run
`sudo dpkg -i ./iqhq-dashboard`ping .

Windows installation

Simply double click on the provided .exe file, you can then access the IQHQ
Dashboard from the start menu under.

IP Addresses

The SD Cards are named, below is their IP addresses

▪ SSA0 = 192.168.1.100

▪ SSA1 = 192.168.1.101

▪ SSA2 = 192.168.1.102

▪ SSA3 = 192.168.1.103

Data Storage

▪ The IQHQ Dashboard operates in a memory only data mode by default, this
that it does not save any settings or device connections.

▪ The IQHQ Dashboard also supports using a timescale database for internal
storage. You can configure it to use the database by clicking the storage icon
in the toolbar and selecting SQL for the DB type. You can then input address
settings, save, and restart the software.

▪ The SQL database will only save information about the device, it will not save
received streams.

▪ We recommend using the “timescale/timescaledb:latest-pg12” docker image.
which has been exported to file and provided with this installation.

Please note that my involvement in the deployment process is limited, and I do
not directly interact with the end-stage deployment to the customer
environment.

137

Communication with Non-Technical Stakeholders
Effective communication with both technical and non-technical stakeholders is
crucial for the success of any project. During the development and implementation of
the SSA data retrieval feature, I utilised Microsoft Teams extensively to communicate
progress, share updates, and gather feedback. This platform was particularly
beneficial for managing communication due to its versatility and user-friendly
interface.

Communicating with Non-Technical Stakeholders:

The CEO, who is not technically inclined, needed to be kept informed about the
project's progress in a manner that was easy to understand. To achieve this, I used
the Teams board to set tasks, track progress, and leave comments. These
comments were crafted to explain technical concepts in simple, non-technical
language. For example, instead of discussing the intricacies of database queries, I
would describe how the data retrieval process would allow users to see the
information they need more quickly and efficiently.

By using Teams, I could:

▪ Maintain Clarity: The visual layout of tasks and progress on the Teams board
made it easy for non-technical stakeholders to understand the project's status
at a glance.

▪ Provide Context: I used comments to give context to each task, explaining
why certain steps were necessary and how they contributed to the overall
project goals.

▪ Foster Engagement: Regular updates and comments encouraged the CEO
to stay engaged with the project, providing timely feedback and making
informed decisions.

Benefits of Using Teams for Communication:

The choice of Microsoft Teams for project communication offered several benefits:

Centralised Communication: Teams provided a single platform where all
project-related communication could be centralised, reducing the risk of
information loss and ensuring that everyone had access to the latest updates.

Enhanced Transparency: The visual task board and detailed comment
threads made the project’s progress transparent to all stakeholders, fostering
trust and accountability.

Improved Collaboration: Teams’ collaborative features, such as shared
documents and real-time chat, enhanced teamwork and ensured that both
technical and non-technical stakeholders could contribute effectively.

138

Flexibility: The ability to switch between chat, calls, and document sharing
allowed for flexible communication, accommodating different preferences and
needs.

In conclusion, effective communication with both technical and non-technical
stakeholders is vital for project success. By using Microsoft Teams, I was able to
tailor my communication methods to suit the audience’s technical knowledge,
ensuring clarity, engagement, and collaboration throughout the project. This
approach not only facilitated the smooth execution of the SSA data retrieval feature
but also enhanced overall project management and stakeholder satisfaction.

Maintenance:
After the deployment of the SSA application, ongoing maintenance and support are
crucial to ensure its optimal performance and reliability. The maintenance phase
involves several key activities aimed at addressing issues, implementing updates,
and providing continuous support to users.

Bug Fixes and Issue Resolution:

1. Regular monitoring of the application to identify and address any bugs or
issues encountered by users.

2. Timely resolution of reported issues to maintain the functionality and usability
of the SSA application.

Software Updates and Enhancements:

1. Implementation of software updates and patches to address security
vulnerabilities and improve performance.

2. Incorporation of new features and enhancements based on user feedback
and evolving requirements.

Performance Monitoring and Optimisation:

1. Continuous monitoring of application performance to identify and address any
performance bottlenecks or optimisation opportunities.

2. Optimisation of code, database queries, and server configurations to improve
overall performance and responsiveness.

User Support and Training:

1. Provision of user support to address queries, provide assistance, and
troubleshoot issues encountered by users.

2. Conducting training sessions or providing documentation to ensure users are
familiar with the features and functionalities of the SSA application.

Backup and Disaster Recovery:

139

1. Implementation and regular testing of backup procedures to ensure data
integrity and resilience against data loss.

2. Development and testing of disaster recovery plans to minimise downtime and
ensure business continuity in the event of system failures or disasters.

Performance Reporting and Analysis:

1. Generation of performance reports and analysis to track key metrics, identify
trends, and make data-driven decisions to improve the application's
performance and user experience.

Feedback Collection and Iterative Improvement:

1. Regular collection of feedback from users to gather insights, identify areas for
improvement, and prioritise future development efforts.

2. Iterative improvement of the SSA application based on user feedback and
evolving business needs to ensure its continued relevance and effectiveness.

Database Maintenance and Optimisation:

1. Regular maintenance of the database to ensure data integrity, optimal
performance, and efficient data retrieval.

2. Periodic review and optimisation of database indices, queries, and storage
structures to enhance performance.

This comprehensive maintenance plan ensures the SSA application remains reliable,
secure, and responsive to user needs, providing ongoing value to its users.

Bux Fixes:
During the maintenance stage, I identified and resolved several minor bugs that
could have impacted the user interface of the SSA data retrieval feature. These
issues had the potential to cause user discomfort and hinder the overall usability of
the application. To enhance the user experience and ensure the application remains
as user-friendly and intuitive as possible, I addressed and fixed these bugs promptly

Updating the capture view graph label:
The capture view graph has a label at the top which shows which stream Id it is
currently showing. Since I had removed stream Id from the retrieved SSA data for
better efficiency, this was no longer being updated. Rather I was using a default
value of 99 as a placeholder. To fix this error I decided to pass the selected stream Id
to the graph formatting functions where the label was set.

140

Figure 144 - Capture graph label set to 99 by default.

I added a streamId as a callback property to the StreamOptsEditor function. I
updated the streamId property along with the history data. This meant I could access
stream Id from the SSAStreamHistory function. I added stream Id as a second
parameter to the makeData, highestPower and lowestPower functions. Finally, I
could pass streamId as a string to the label property that was returned.

Figure 145 - Adding streamId to callback.

Figure 146 - Updating streamId on response.

Figure 147 - Adding streamId as a parameter.

141

Figure 148 - Updating label property with streamId.

In order to test the fix, I added test data directly to the ssa_metrics table using
pgAdmin, ensuring that streamId was a random number that was not 99. I was then
able to select this random streamId value from the spectrum history streamId drop
down. After clicking update the stream Id label was showing the corresponding
stream Id.

Figure 149 - Adding test data to the ssa_metrics table.

Figure 150 - Capture graph label displaying correct stream Id.

Infinite loop error in the UI:
I noticed that I was getting the following error in the UI console:

Figure 151 - Infinite loop error.

The issue was an infinite loop caused by the useEffect hook that was used to
handle fetching the device and stream Id data, repeatedly running due to its
dependency on a non-memoized fetchData function. Because fetchData was defined

142

inline and changed on every render, the useEffect would continuously trigger re-
renders and state updates, leading to the "Maximum update depth exceeded" error.
This meant that when you tried to retrieve SSA data, the system would run out of
memory and crash the page.

Figure 152 - Dashboard page crashing.

To address the infinite loop issue, I introduced a useRef hook to keep track of the
previous value of offset. This change ensures that fetchData is only called when
offset changes to a new value, preventing unnecessary and repeated fetch
operations. By comparing the current offset with the previous value stored in
prevOffsetRef, we avoid triggering fetchData on every render or on unchanged offset
values. Additionally, I memoized the fetchData function using useCallback, ensuring
that it remains stable across renders, thus preventing it from being redefined and
causing the useEffect hook to run repeatedly. These changes effectively broke the
cycle of re-renders and state updates, resolving the "Maximum update depth
exceeded" error.

143

Figure 153 - Introduced a useRef and useCallback.

Including static time:
When I developed the refetching of devices and streams when the time range was
updated, I had only included relative time. This meant that when the user chose a
specific start date and specific end date, it was not being recognised as an updated
time range by the system.

Figure 154 - Time selection option.

To ensure both types of time was included I changed the offset variable to a reassign
able variable. Where initially it was set to use the offset from relative time. Then I
would check to see if the time range type was static, if it was, I would use the offset

144

from static time, or else the offset from relative time. This update ensured both types
of time could be used by the user.

Figure 155 - Updating offset based on time selection.

Conclusion:
In conclusion, the development and implementation of the SSA data retrieval feature
represent a significant advancement for the overall SSA application on the
dashboard. I am highly satisfied with the project's outcome, as it effectively
addresses the need for robust and efficient SSA data retrieval and visualisation. The
project was completed within the stipulated deadline through effective time
management and strategic planning, meeting both functional and performance
requirements.

Project Outcome

The project has been a resounding success, with positive feedback from both the
manager and end users. The new feature has greatly enhanced the dashboard's
functionality, enabling users to view SSA data graphically. This capability allows
users to analyse data more effectively, identify points of interest, and draw deeper
insights. The ability to capture and visualise SSA data has substantially increased
the dashboard's usefulness, making it a more valuable tool for users, and improving
their overall experience.

Learning Experience

Throughout this project, I acquired extensive knowledge and practical experience in
data retrieval and processing. I gained hands-on expertise in graphical data
representation and honed my UI development skills. This project significantly
advanced my software engineering abilities and deepened my understanding of
database management. I learned how to manipulate database tables for optimised
storage management and improved my collaboration, communication, and project
management skills. Working closely with team members and stakeholders facilitated
a smooth and efficient development process, enhancing my overall competency in
these areas.

Areas for Improvement

While the current SSA data retrieval feature meets the project requirements and user
needs, there are areas where performance could be improved. The system's ability
to handle and display large volumes of data could be enhanced. Currently, viewing
large datasets takes considerable time, and implementing more efficient algorithms
for processing data—such as optimising the waterfall plot and graph display—would

145

be beneficial. Additionally, applying filters directly to the database query rather than
retrieving all data from the selected time range would significantly improve efficiency.
I also encountered challenges with data persistence, as the waterfall plot currently
disappears when switching between tabs, requiring users to re-update to view the
plot. Addressing these issues would enhance the feature's usability and
performance.

Future Directions

Looking ahead, there are several potential enhancements to consider for this
feature. Implementing functionality to highlight areas of interest based on user-
defined criteria would greatly improve its utility by allowing users to focus on
significant data points. Adding a time axis to the waterfall plot would provide users
with more detailed temporal context for the data, enhancing their analysis
capabilities. Additionally, enabling users to select specific timestamps to view data
would allow for more precise data examination and comparisons. These
improvements would make the feature even more resourceful and valuable for users,
further elevating the SSA dashboard's overall effectiveness.

In summary, the data retrieval feature has proven to be a valuable addition to the
SSA dashboard application, significantly enhancing its functionality and user
satisfaction. I am grateful for the opportunity to contribute to this project and look
forward to exploring future enhancements and developments.

146

	The Task:
	Feasibility Study:
	Scope Definition:
	Technical Feasibility:

	Requirement Analysis:
	User Story:
	Design:
	System Architecture Design:
	Activity Diagram :
	ER Diagram:
	Pseudo Code:
	UI Component Design :

	Development:
	Creating a SSA history Section:
	Creating an SSA history type:
	Updating SSAStreamHistory.tsx:
	Initial back-end implementation of data retrieval:
	Testing the GetSSAHistory function:
	Test 1: Down Sampling
	Test 2: Threshold Filtering
	Test 3: Down Sampling & Threshold Filtering
	Test 4: No Filters

	Creating a SSA history route:
	Issues with the history route:
	Updating the UI and restructuring the history options:
	Connecting the front end to the back end:
	Formatting the filtered SSA data:
	Getting filtered data into the UI:
	Adding stream Id to the database:
	Updating the HistoryData type:
	Enabling the use of both static and relative time:
	Adding a react circular progress element to indicate data retrieval:
	Using integer for time instead of string:
	Implementing the HistoryCapture type:
	Displaying the SSA data on a waterfall plot:
	Implementing Alerts for Data Retrieval Feedback
	Enabling display of the selected frequency:
	Filtering SSA data by highest and lowest power levels on the capture graph.
	Retrieving all unique device Ids from the database:
	GetDeviceandStream function:
	Displaying unique device Ids and stream Ids from the ssa_metrics database table:
	Refetching Devices and Streams on Time Range Update:
	Displaying Alerts for No Devices Found:
	Updating the HistoryCapture type:
	Updating the GetSSAHistory.ts file:
	Updating the SSAStreamHistory.tsx file:
	Finalising SSA history capture feature:
	Fixing getting ssa_metrics table error:
	Fixing waterfall data useState:
	Displaying waterfall plot chronologically:
	Fixing maximum update depth exceeded error:
	Tidying up code:

	Testing:
	Unit Testing:
	GetSSAHistory.ts:
	GetDeviceandStream.ts:
	SSAStreamHistory.ts:

	Integration Testing:
	UI Component Interaction
	Database Integration
	API Endpoints
	Data Visualisation
	Error Handling

	Performance Testing:
	Test Scenario 1: Basic Data Retrieval Performance
	Test Scenario 2: High Data Volume Retrieval
	Test Scenario 3: Filtered Data Retrieval
	Performance Test Evaluation:

	Deployment:
	Communication with Non-Technical Stakeholders
	Maintenance:
	Bux Fixes:
	Updating the capture view graph label:
	Infinite loop error in the UI:
	Including static time:

	Conclusion:

