
 

Abstract
This document presents an analysis of the database export feature, focusing on its

design, development, testing, and deployment. The feature allows users to export the
database efficiently and reliably. The export feature aims to enhance the utility and user
satisfaction of the product by providing users with the capability to export database logs

for further analysis and reference.

PROJECT TWO

Database Export Feature

Abstract

This document presents an analysis of the database export feature, focusing on its

design, development, testing, and deployment. The feature allows users to export the

database efficiently and reliably. The export feature aims to enhance the utility and user

satisfaction of the product by providing users with the capability to export database logs

for further analysis and reference.

Alister David

alisterdavid03@gmail.com

Contents
The Task: ...2
Feasibility Study:..3

Scope Definition: ..3
Technical Feasibility: ..4

Requirements Analysis: ...7
User Story:...8
Design:...9

UI Component Design:...9
UML Diagram: ..10
Pseudo Code:...11

Development:...13
Exporting the database: ...13
Initial front-end integration of a react button:..15
ExportFunction File: ...16
Initial Testing: ...19
Docker Issues: ...20
Handling multiple running docker containers: ..21
Updating Database Export Command for File Path Location: ...23
Handling export success/failure using useState in React: ...23
Successful Implementation of Export Functionality:...25

Testing: ..25
Unit Testing: ...25
Integration Testing:...30
Performance Testing: ...35

Deployment:...40
Maintenance: ...43
Conclusion: ..44

1

The Task:

The task for Project 2 involves enhancing the functionality of the dashboard interface at IQHQ by
implementing an export feature. This feature aims to enable users to export database logs to their
devices, thereby improving the product's utility and customer satisfaction.

Figure 1 - Dashboard export function set on teams.

2

Feasibility Study:

Scope Definition:

Objective:

The primary objective of this project is to implement an export feature in the dashboard interface at
IQHQ, enabling users to export database logs. The export feature aims to enhance the utility and
user satisfaction of the product by providing users with the capability to export database logs for
further analysis and reference.

Specific Requirements:

▪ File Formats Supported: The export feature should support multiple file formats for exporting
database logs, such as CSV, Excel, or PDF, to cater to varying user preferences and use cases.

▪ User Interface Integration: Implement an export button or similar user interface element within
the dashboard interface to initiate the database export process.

▪ Backend Implementation: Develop backend functionality to handle the database export process,
including retrieving all database logs and generating the export file.

▪ Export Entire Database: The export feature should allow users to export the entire database logs
without the need for selecting specific criteria or options.

▪ Compatibility with Existing Functionalities: The export feature should seamlessly integrate with
existing functionalities of the dashboard interface, maintaining consistency in user experience
and workflow.

▪ Progress Feedback: Provide feedback to users during the export process, indicating the progress
and status of the export operation to ensure transparency and user confidence.

▪ Error Handling: The system should handle errors gracefully and provide informative error
messages to users in case of export failures or data inconsistencies.

▪ Scalability: Ensure that the export feature is scalable to accommodate future growth in data
volume and user demand without compromising performance or reliability.

3

Technical Feasibility:

Database Structure and Management:

▪ Evaluate the compatibility of the existing database structure (PostgreSQL) with the export
feature requirements.

▪ Ensure that the database schema is designed to efficiently store and retrieve the required
data for export.

Relational & Non-relational Databases:

In assessing the technical feasibility of implementing the export feature in the dashboard interface at
IQHQ, it is essential to consider the principles and uses of relational and non-relational databases.

Relational Database (PostgreSQL):

▪ PostgreSQL, as the chosen relational database management system at IQHQ, follows
principles of relational databases.

▪ Relational databases organise data into structured tables with predefined schemas,
facilitating data integrity and consistency.

▪ PostgreSQL offers robustness, flexibility, and comprehensive support for SQL-based data
manipulation, making it suitable for managing structured data in IQHQ's environment.

Non-relational Database Considerations:

▪ While PostgreSQL meets the structured data requirements of IQHQ, consideration was given
to non-relational databases.

▪ Non-relational databases, such as MongoDB or Cassandra, offer advantages in handling
unstructured or semi-structured data and scalability.

▪ However, for the export feature project, the structured nature of database logs and the
existing familiarity with PostgreSQL favoured its selection over non-relational alternatives.

There are several reasons as to why a relational database is the most suitable type of database for
storing data at IQHQ. Relational databases enforce strict data integrity constraints, such as primary
keys, foreign keys, and referential integrity, ensuring that data remains consistent and accurate. This
is crucial in military applications where precision and reliability are critical, as any inaccuracies or
inconsistencies in data could have serious consequences.

Relational databases organise data into structured tables with predefined schemas, making it easier
to model and manage complex relationships between different data entities. This structured

4

approach is well-suited for storing device metrics and data from various military devices, allowing for
efficient querying and analysis.

Moreover, relational databases offer powerful querying capabilities using SQL, allowing users to
perform complex queries to retrieve, filter, and analyse data. This flexibility is essential for generating
actionable insights from device metrics and operational data, enabling informed decision-making in
military operations.

Additionally, relational databases provide robust security features, including user authentication,
authorisation, and encryption, to protect sensitive military data from unauthorised access or
tampering. This is crucial for maintaining confidentiality and ensuring that only authorised personnel
have access to classified information.

Relational databases often have built-in features and mechanisms to support regulatory compliance
requirements, such as data privacy regulations or industry standards for handling sensitive
information. This helps the company ensure compliance with government regulations and
contractual obligations when handling military data.

Lastly, relational databases facilitate integration with other systems and applications used in military
operations. This allows for seamless data exchange and communication between different defence
systems, enhancing collaboration and coordination among various stakeholders.

Backend Technology Stack:

▪ Assess the suitability of the backend technologies (e.g., Node.js, TypeScript) for
implementing the export functionality.

▪ Determine if the chosen technologies support database connectivity and file manipulation
required for exporting database logs.

The backend technologies of Node.js and TypeScript are well-suited for implementing the export
functionality in the project. With strong support for database connectivity, evidenced by
dependencies like pg for PostgreSQL interaction, these technologies enable efficient retrieval of
database logs. Additionally, Node.js provides powerful file manipulation capabilities, complemented
by TypeScript's type safety and code maintainability advantages. The project's development
environment, featuring scripts for automatic server reloading and TypeScript execution, fosters a
conducive atmosphere for feature implementation and testing. Supported by extensive community
backing and a rich ecosystem, Node.js and TypeScript offer ample resources for backend
development tasks, ensuring the successful integration of the export feature with robust database
log retrieval and export file generation functionalities.

Export Mechanism:

▪ Research and identify appropriate methods for exporting database logs, considering factors
such as database size, performance, and file format requirements.

▪ Implement backend logic to retrieve database logs efficiently and generate the export file in
the desired format.

In addressing the task of exporting database logs, I conducted extensive research and identified
methods, considering factors like database size, performance, and file format requirements. Given
the substantial size of the database, spanning several gigabytes with extensive metric data, it was
crucial to choose a method that could efficiently handle this volume of information without
compromising performance.

5

While the initial proposal suggested using a CSV file format, upon thorough examination of available
options, I opted to export the logs in an SQL file format instead. My decision was based on the SQL
file's ability to maintain the database's structural integrity, preserving complex relationships and data
hierarchies inherent in the system. Additionally, the SQL file format provides better support for large
datasets and offers more robust handling of various data types and structures present in the
database.

In implementing the backend logic for efficient log retrieval and export file generation, I carefully
optimised database queries and file writing processes to minimise resource consumption and
maximise performance. This involved leveraging appropriate database querying techniques, such as
batching, to efficiently retrieve logs without overwhelming system resources. Furthermore,
implementing mechanisms for asynchronous processing or parallel execution helped expedite the
export process, ensuring the timely generation of the export file.

Overall, my research-driven approach to identifying suitable export methods and the decision to
utilise an SQL file format reflects a strategic consideration of performance, scalability, and data
integrity concerns inherent in exporting large volumes of database logs.

Integration with Frontend:

▪ Ensure seamless integration of the export feature with the frontend dashboard interface
built using React components.

▪ Implement frontend UI elements (e.g., export button) to initiate the export process and
provide feedback to users.

In considering the technical feasibility of integrating the export feature with the frontend dashboard
interface, the decision to utilise React components stemmed from several key factors. Firstly, the
entire dashboard frontend already constructed using React components, therefore the task is to
seamlessly incorporate the export functionality within this framework.

 Reacts component-based architecture aligns well with the modular nature of frontend development,
allowing for the creation of reusable and composable UI elements. This modular approach not only
promotes code reusability and maintainability but also facilitates scalability as the dashboard
interface evolves and expands with additional features.

Moreover, React's virtual DOM (Document Object Model) and efficient rendering mechanisms
contribute to optimal performance, ensuring smooth and responsive user interactions even with
complex UI components and large datasets, which is crucial for maintaining a seamless user
experience in the dashboard interface.

Additionally, React's ecosystem offers a rich selection of libraries, tools, and community support,
providing developers with resources to streamline development processes and address challenges
effectively. Through leveraging React components for the frontend dashboard interface, I aimed to
capitalise on these benefits to implement the export feature efficiently while ensuring compatibility,
performance, and maintainability across the dashboard application.

Backend-frontend Communication:

▪ Establish communication protocols and APIs for frontend-backend interaction to facilitate
the export functionality.

▪ Implement mechanisms for passing export requests from the frontend to the backend and
receiving export status updates.

6

 
In terms of backend-frontend communication, my chosen method of API relies on HTTP-based routes
implemented using the Express framework in Node.js. I opted for this approach due to its simplicity,
versatility, and widespread adoption in web development. HTTP provides a standardised protocol for
client-server communication, making it suitable for exchanging export requests and status updates
between the frontend and backend components of our application. By defining specific routes for
export functionality, I establish clear endpoints for frontend interaction, enabling seamless
integration of export features into the dashboard interface.

Additionally, Express simplifies the implementation of these routes with its concise and intuitive
syntax, allowing me to focus on core functionality rather than low-level networking concerns.
Overall, my choice of HTTP-based APIs and Express for backend-frontend communication ensures
robust, efficient, and scalable interaction between the frontend and backend components,
facilitating the seamless implementation of export functionality in our application.

Error Handling and Logging:

▪ Develop robust error handling mechanisms to handle exceptions and errors encountered
during the export process.

▪ Implement logging functionalities to track export activities and capture relevant information
for troubleshooting and auditing purposes.

 
In ensuring the reliability and stability of the export process, I developed robust error handling
mechanisms to gracefully manage exceptions and errors encountered. By implementing thorough
error handling procedures, I can effectively identify and address any issues that arise during the
export process, minimising disruptions and ensuring smooth operation. Additionally, logging
functionalities were incorporated to track export activities comprehensively. This logging system
captures relevant information for troubleshooting and auditing purposes, providing valuable insights
into the export process, and facilitating timely resolution of any encountered issues.

Requirements Analysis:

Background:

Our dashboard application serves as a central hub for monitoring and managing various aspects of a
system. One common requirement expressed by several companies is the ability to export the data
stored in the PostgreSQL database used by the dashboard. This feature is essential for generating
backups and facilitating data analysis by external tools.

Functional Requirements:

1. Export Functionality: Users should be able to export the entire PostgreSQL database used by
the dashboard.

2. User Feedback: Upon initiating the export process, users should receive clear feedback
indicating whether the export was successful or not.

3. Location of Exported Data: The exported database file should be stored in a location easily
accessible to users, such as the desktop.

Non-Functional Requirements:

7

1. Reliability: The export process should be reliable, ensuring that no data is lost during the
export.

2. User Interface: The export functionality should be integrated seamlessly into the
dashboard's user interface, making it intuitive for users to access and use.

3. Performance: The export process should be efficient, minimising the time required to
complete the export operation.

4. Error Handling: The system should handle any errors encountered during the export process
gracefully, providing meaningful error messages to users.

User Story:

Title: Export PostgreSQL Database As a dashboard user, I want to export the PostgreSQL database
used by the dashboard So that I can create backups and analyse the data using external tools.

Acceptance Criteria:

1. When I click on the "Export" button in the dashboard toolbar,

2. Then I should receive feedback indicating whether the export was successful or not.

3. If the export is successful, the database file should be accessible on my desktop.

4. If multiple running containers are detected, the system should inform me and prompt for
further action.

5. Any errors encountered during the export process should be handled gracefully, with
meaningful error messages displayed to me.

This user story outlines the need for the export functionality and specifies the expected behaviour
and outcomes when using the feature.

8

Design:

UI Component Design:

Figure 2 - Proposed database export button design.

Figure 3 - Proposed successful export message design.

9

Proposed Database Export Button

Proposed Successful Export Message

Figure 4 - Proposed unsuccessful export message design.

UML Diagram:
The UML diagram presented here offers a high-level visualisation of the database export
feature within the application. It outlines the sequence of events triggered when a user
interacts with the 'Export Database' button, illustrating the flow of control through various
components. This diagram serves as a visual aid to understand the interactions and
dependencies involved in the database export process, providing stakeholders with a clear
overview of the feature's functionality.

10

Proposed Unsuccessful Export Message

Figure 5 - UML design for the export process.

Pseudo Code:
I included pseudocode in the design documentation to provide a clear roadmap of the steps involved
in implementing the database export feature. It serves as a concise outline of the logical flow of the
feature, independent of any specific programming language or framework. By detailing the key
actions and decision points, pseudocode helps ensure that all stakeholders have a shared
understanding of how the feature will function. It also aids in collaboration among developers,

11

allowing for easier discussion and refinement of the feature's design before actual implementation
begins.

Pseudo Code For The Export Function:

Figure 6 - Pseudo code for the export function.

Pseudo Code For The UI:

Figure 7 - Pseudo code for the export UI.

12

Figure 8 - command to pg_dumpall a database.

Development:

Exporting the database:

My first step was to figure out how I could export a PostgreSQL database using Postgres commands.
After doing some research, I found that PostgreSQL has a utility called pg_dumpall. pg_dumpall is a
utility for writing out (“dumping”) all PostgreSQL databases of a cluster into one script file. The script
file contains SQL commands that can be used as input to psql to restore the databases. It does this by
calling pg_dump for each database in the cluster. pg_dumpall also dumps global objects that are
common to all databases, namely database roles, tablespaces, and privilege grants for configuration
parameters.

▪ execSync: This is a function from a Node.js library (likely a framework like NestJS) that allows
you to execute system commands and capture the output.

▪ docker exec: This command is used to run a process inside a Docker container.

▪ -t: This flag tells docker exec to allocate a pseudo-tty (terminal) for the process being
executed. This might be required by some database utilities.

▪ <container_id>: This should be the ID of the Docker container running the PostgreSQL
database.

▪ pg_dumpall: This is a command-line utility included with PostgreSQL that is used to create a
backup of a database cluster.

▪ -c: tells pg_dumpall to include table data in the backup.

▪ -U <username>: specifies the username to connect to the PostgreSQL server.

▪ dump_date +%d-%m-%Y''%H%M_%S.sql: This part redirects the output of pg_dumpall to a
file.

I added a file called ExportFunction.ts, this file will contain the pg_dumpall command needed to
export the database. To initially test the command, I needed a couple of variables. I need the
relevant docker container ID, as well as the username used to connect to the PostgreSQL server. To
find the docker ID I ran the ‘docker ps’ command in the dashboard repository, which displayed all the
container IDs, initially I was not sure which ID to use, therefore since this was a test I used the most
recent ID. I opened up pgAdmin to find the username which was set to “postgres” as default. I now
had a complete command I could use, to test it out I ran the command in the terminal. The output of
the command was a successful database export, I was able to open the SQL file and view the
database content in it.

Figure 9 - Terminal output of running docker ps.

13

Figure 10 - Database SQL file.

Figure 11 - Contents of database SQL file.

14

Initial front-end integration of a react button:

To incorporate the export functionality into the dashboard interface, I identified the ‘AppToolbar.tsx’
file responsible for rendering the toolbar at the top of the dashboard. Recognising its broad
applicability for various dashboard features, including the export button, I decided to integrate the
export button within this component.

Within the ‘AppToolbar.tsx’ file, I introduced the export button using the ‘HTTPTriggerButton’
component, a reusable component designed for handling HTTP requests. Utilising this component
provided consistency in user interactions across the dashboard. I configured the export button to
trigger a POST request to the ‘/export’ endpoint upon user interaction.

The ‘HTTPTriggerButton’ component encapsulates the necessary logic for sending HTTP requests,
including handling loading states and response data. By specifying the appropriate HTTP method
(POST) and endpoint (‘/export’), I ensured seamless interaction between the frontend and backend
components.

To enhance user experience and maintain visual consistency, I positioned the export button
alongside other toolbar elements, ensuring intuitive navigation and accessibility for dashboard users.

15

Figure 12 - React Button.

Figure 13 - IQHQ Dashboard.

When the export button is clicked, it triggers the ‘onClick’ event handler defined in the
‘HTTPTriggerButton’ component. At this stage, the button's appearance changes to indicate that an
action is being performed. The conditional styling logic within the component checks the response
status (‘response.ok === false’) to determine if the button should be displayed in the 'error' colour.
Since we have not implemented any HTTP functionality yet, the response status is undefined,
resulting in the button turning red to visually indicate an error state.

Figure 14 - IQHQ Dashboard.

ExportFunction File:

I added a file called ‘ExportFunction.ts’ to encapsulate the logic responsible for exporting the
PostgreSQL database. This file serves as a dedicated module for handling export-related functionality
within our application. To establish a route for handling export requests, I began by setting up a
‘route.post()’ method within the file. This method defines a route that listens for HTTP POST requests
sent to a specific endpoint, allowing us to trigger the export process when a POST request is
received.

Within the POST route handler, I incorporated the necessary Docker command to export the
database using the execSync() function from the Node.js child_process module. This command

16

utilises the docker exec utility to execute a command within the Docker container running the
PostgreSQL database.

Overall, the ‘route.post()’ method, combined with the Docker command, enables us to handle export
requests and execute the necessary operations for exporting the database within our Express
application. This approach provides a structured and maintainable solution for integrating export
functionality into our application architecture.

Figure 15 - ExportFunction.ts file containing pg_dumpall command.

I added an import statement to include the ‘ExportFunction’ module in the ‘index.ts’ file. This import
allows us to use the export functionality defined in ExportFunction.ts within the main route file.

Next, I included a new route for the export functionality using ‘route.use("/export", ExportFunction)’;
This line establishes a route endpoint /export that is handled by the ‘ExportFunction’ module. Now,
when a request is made to the /export endpoint, the corresponding logic in the ExportFunction.ts file
will be executed to handle the request.

By adding the export route to the ‘index.ts’ file, we ensure that the export functionality is integrated
into the overall API routes of our application.

17

Figure 16 - index.ts file containing routes.

18

Initial Testing:

For the Initial Testing phase, I extended the functionality of the existing export button in the
AppToolbar.tsx file by adding an ‘onComplete’ event handler to the HTTPTriggerButton component.
This event handler was configured to log 'Button Clicked' to the console upon successful completion
of the export operation. After starting up the dashboard, I proceeded to test the export functionality.
Upon clicking the export button, the expected behaviour occurred: the message 'Button Clicked' was
logged to the Google Console, confirming that the button click event and export process was
successfully executed.

Figure 17 - Updated react button.

Figure 18 - IQHQ Dashboard showing console output of clicking the export database button.

19

Figure 19 - Exported database SQL file.

While the initial testing yielded positive results in terms of capturing the button click event and
initiating the export process, it also highlighted areas for refinement. One notable improvement
involves exporting the database to a more user-friendly location, such as the desktop, to enhance
accessibility and convenience for users. This adjustment would involve a straightforward
implementation to redirect the exported database file to the desired location.

Additionally, it became apparent that there is a need for user interface feedback to indicate the start
and end of the export process. Currently, there is no visual indication that the export operation is
underway once the button is clicked. Incorporating UI messages or notifications would enhance the
user experience by providing clear feedback about the status of the export process, ensuring users
are informed and aware of ongoing operations.

Docker Issues:

I ran into issues exporting the database, since all of a sudden it seemed to not work. After speaking
to software team, I realised each terminal command run, created a new Docker container, leading to
multiple restarting containers. Therefore, I need to implement some sort of filter in my
‘ExportFunction.ts’ file that will only use the running container Id. I added a function called
‘getContainerIDs’ to the ‘ExportFunction.ts’ file that would return the running IDs using the relevant
image name.

20
Figure 20 - getContainerIDs function.

The getContainerIDs function is designed to retrieve the IDs of running Docker containers associated
with a specified image name. Within a try block, it constructs a Docker command tailored to filter
containers by the provided image name and their running status. The execSync function executes this
command synchronously, capturing the output containing container IDs. The output is then trimmed
to remove any whitespace, and the resulting container ID or null is returned. If an error occurs during
execution, such as failure to execute the Docker command, the catch block handles it by logging an
error message and returning null.

Figure 21 - console logging containerIDs.

Figure 22 - output of console logging containerIDs.

Testing the function proved successful, now I can use the function to return the running container Id
and use the Id in the pg_dumpall command to dump the right database.

Figure 23 - using containerIDs in pg_dumpall command.

Handling multiple running docker containers:

Anticipating the possibility of multiple running Docker containers, I devised a strategy to handle this
scenario effectively. Upon retrieving the container IDs using the ‘getContainerIDs’ function, I
recognised that if more than one container is running, the function returns a string containing all the
IDs. To address this, I implemented a solution that splits the ‘containerIDs’ string into a list, allowing
for individual processing of each ID. By examining the length of this list, I could ascertain whether
there were no running containers or if multiple instances were detected. This crucial step ensured
that appropriate actions could be taken based on the specific circumstances. Additionally, logging
mechanisms were implemented to alert users about the presence of multiple containers, enabling
clear communication and proactive resolution of potential issues. This approach enhances the
reliability and robustness of the Docker container management process, safeguarding against
unexpected complications during database export operations.

21

Figure 24 - Code to check for either multiple running containers or no running containers.

Figure 25 - Output of checking for multiple running containers.

22

Updating Database Export Command for File Path Location:

To ensure that the exported database file is stored in an appropriate and easily accessible location, I
modified the export command to specify the Desktop directory as the destination. By appending the
> ~/Desktop/ prefix to the command, I directed the output of the ‘pg_dumpall’ operation to the
user's Desktop folder. This adjustment streamlines the file management process, allowing users to
quickly locate and access the exported database file directly from their desktop environment.
Additionally, it enhances the user experience by providing a clear and intuitive destination for the
exported data.

Handling export success/failure using useState in React:

To provide feedback to the user regarding the success or failure of the database export operation, I
integrated the ‘alert’ function into the application. This involved setting up a ‘useState’ hook named
‘exportSuccess’, initialised to ‘false’, to track the export status. Subsequently, I created two functions:
‘handleExportSuccess’, responsible for updating ‘exportSuccess’ to ‘true’ and displaying the "Export
Successful" alert, and ‘handleExportFailure’, which sets ‘exportSuccess’ to `false` and triggers the
"Export Unsuccessful" alert. Within the button's ‘onComplete’ callback, I implemented a check to
determine whether the export operation was successful (‘ok’ parameter). If successful,
‘handleExportSuccess’ is invoked; otherwise, ‘handleExportFailure’ is triggered. This approach
ensures that the user receives immediate feedback on the outcome of the export process.

Figure 26 - React useState for handling a successful/unsuccessful database export.

Figure 27 - Updated react button using useState.

23

Figure 28 - IQHQ Dashboard showing the result of a successful database export.

Figure 29 - Output as a result of a successful database export.

24

Successful Implementation of Export Functionality:

 
With the completion of the code development stage, the program now functions as intended
according to the task description. Users can seamlessly export the PostgreSQL database by
clicking the designated button on the dashboard's toolbar. The integration of alert
notifications ensures that users receive immediate feedback on the success or failure of the
export operation, enhancing the overall user experience. Additionally, the implementation of
error handling and status checks ensures the robustness and reliability of the export
functionality.

Testing:

Unit Testing:

Unit testing involves testing individual units or components of code in isolation to ensure
they function correctly. It is a critical part of software development, helping identify and
address issues early. By testing units independently, I can maintain code quality, promote
good design practices, and ensure the reliability of the final product. My approach to unit
testing involves systematically reviewing each file that I have modified or added and
conducting thorough testing on the relevant components.

ExportFunction.ts:

getContainerIDs(imageName: string): string | null

Figure 30 - getContainerIDs function.

Test Case 1: valid imageName

Input: imageName = ‘timescale/timescaledb:latest-pg12’

Expected Output: 195dba25e5a7

Description: Test the unit with a valid image name to make sure it returns a valid running
container Id.

Actual Output: 195dba25e5a7

Evaluation: This test case has passed.

25

Test Case 2: Invalid imageName

Input: imageName = ‘test’

Expected Output: null

Description: Test the unit with an invalid image name to make sure it returns null.

Actual Output: null

Evaluation: This test case has passed.

Test Case 3: Non string imageName

Input: imageName = 123

Expected Output: Typescript compilation error

Description: Test the unit with a non string value.

Actual Output: TS:Error: X Unable to compile TypeScript, Argument of type ‘number’ is not
assignable to parameter of type ‘string’.

Evaluation: This was the expected output; however, it is very unlikely this error would occur.

A check to see if there is either no running container or multiple running containers.

Figure 31 - Code that checks if there are multiple or no running containers.

Test Case 1: No running container

Input: imageName is set to 'test', indicating an invalid image name.

Expected Output: An empty array ([]) and the message 'No running containers'.

Description: Verify that when the provided image name does not correspond to any running
containers, the application correctly identifies the absence of running containers and
displays the message 'No running containers'.

Actual Output: An empty array ([]) and the message 'No running containers'.

26

Evaluation: This unit test has passed as the application correctly handles the scenario of no
running containers.

Test Case 2: Single running container

Input: imageName is set to 'timescale/timescaledb:latest-pg12', representing a valid image
name with a single running container.

Expected Output: An array containing the single running container ID (['195dba25e5a7'])
and the message 'Looks good'.

Description: Validate that when there is only one running container corresponding to the
provided image name, the application identifies the single container and confirms its
presence with the message 'Looks good'.

Actual Output: An array containing the single running container ID (['195dba25e5a7']) and
the message 'Looks good'.

Evaluation: This unit test has passed as the application successfully detects and
acknowledges the presence of a single running container.

Test Case 3: Multiple running containers

Input: checkIDs is set to an array of multiple running container IDs (['45d560aeb747',
'eff849e3b786', '5ff155e1ee71']).

Expected Output: The same array of multiple running container IDs (['45d560aeb747',
'eff849e3b786', '5ff155e1ee71']) and the message 'More than one running container'.

Description: Ensure that when multiple running containers are found for the provided image
name, the application identifies the situation and notifies the user about the presence of
multiple containers with the message 'More than one running container'.

Actual Output: The same array of multiple running container IDs (['45d560aeb747',
'eff849e3b786', '5ff155e1ee71']) and the message 'More than one running container'.

Evaluation: This unit test has passed; however, an issue has been identified in the code.
The execCommand variable references containerIDs, which does not handle cases of
multiple running containers correctly. To resolve this, the code should be updated to use a
single container ID from the checkIDs list instead of containerIDs. Additionally, I have
improved clarity by renaming variables for better readability.

27

Updated check to see if there is either no running container or multiple running
containers.

Figure 32 - Updated code that checks if there are multiple or no running containers.

AppToolBar.tsx:

Figure 33 - Code for handling a successful/unsuccessful export.

28

Figure 34 - Code that implements export handler.

Handling Export Success/Failure:

Test Case 1: Successful Export

Input: ok is set to true, simulating a successful export operation.

Expected Output: The application should display a React alert with the message "Export
Successful".

Description: Verify that when the export operation completes successfully, the application
notifies the user with an alert indicating a successful export.

Actual Output: React alert displays the message "Export Successful".

Evaluation: This unit test has passed as the application successfully alerts the user about
the successful export operation.

Test Case 2: Unsuccessful Export

Input: ok is set to false, simulating an unsuccessful export operation.

Expected Output: The application should display a React alert with the message "Export
Unsuccessful".

Description: Validate that when the export operation fails, the application informs the user
with an alert indicating an unsuccessful export.

Actual Output: React alert displays the message "Export Unsuccessful".

Evaluation: This unit test has passed as the application appropriately notifies the user about
the failed export operation.

29

Integration Testing:

Integration testing ensures that the various components of a system function together as
expected. In this section, I will validate the interaction and collaboration between different
modules, services, and layers of the application to ensure seamless functionality across the
entire system. This includes testing API endpoints, frontend-backend interaction, database
integration, external service integration, error handling, cross-browser compatibility, security,
and performance.

UI Component Interaction:
Ensure that the UI components (such as buttons) behave as expected and trigger the
appropriate actions when clicked or interacted with.

Test Case 1: Button Click Interaction

Description: Verify that clicking the "Export Database" button triggers the database export
process.

Steps:

1. Open the application UI.

2. Locate the "Export Database" button.

3. Click the button.

Expected Result: The database export process initiates, and the user is provided with
feedback indicating that the export is in progress.

Actual Result: The database export process initiated, and the user was provided with
feedback indicating that the export is in progress.

Evaluation: This test was a success.

Test Case 2: Success Alert Display

30

Description: Ensure that upon successful database export, a success alert message is
displayed to the user.

Steps:

1. Trigger a successful database export process.

Expected Result: The user receives a success alert message confirming that the export
has been completed successfully.

Actual Result: The user received a success alert message confirming that the export has
been completed successfully.

Evaluation: This test was a success.

Test Case 3: Failure Alert Display

Description: Validate that in case of a failed database export, an error alert message is
presented to the user.

Steps:

1. Simulate a failed database export process.

Expected Result: The user receives an error alert message indicating that the export
process encountered an issue.

Actual Result: The user received an error alert message indicating that the export process
encountered an issue.

Evaluation: This test was a success.

Database Export:
 Validate that the database export functionality works correctly, including exporting the data
to the designated location on the desktop.

Test Case 1: Successful Database Export

Description: Verify that the database export process executes successfully, and the data is
exported to the designated location on the desktop.

Steps:

1. Trigger the database export process.

2. Check the designated location on the desktop for the exported database file.

Expected Result: The database export process completes successfully, and the exported
file is found at the specified location on the desktop.

Actual Result: The database export process completed successfully, and the exported file
was found at the specified location on the desktop.

Evaluation: This test was a success.

31

Test Case 2: Export File Existence

Description: Ensure that the exported database file exists after the export process.

Steps:

1. Trigger the database export process.

2. Check if the exported file exists at the designated location on the desktop.

Expected Result: The exported file exists at the specified location.

Actual Result: The exported file exists at the specified location.

Evaluation: This test was a success.

Test Case 3: Export Process Feedback

Description: Validate that appropriate feedback is provided to the user during the database
export process.

Steps:

1. Trigger the database export process.

2. Observe the application interface or any provided feedback mechanism.

Expected Result: The user receives feedback indicating the progress of the export process,
such as a loading indicator or success message.

Actual Result: The user received feedback indicating the progress of the export process,
such as a loading indicator or success message.

Evaluation: This test was a success.

Error Handling:
Verify that the application handles errors gracefully, displaying meaningful error messages to
the user in case of failures or exceptions.

Test Case 1: Docker Execution Error

Description: Verify that appropriate error handling is in place when there is an issue with
executing Docker commands.

Steps:

1. Simulate an error in executing a Docker command, such as a syntax error or a
command failure.

Expected Result: The application displays an error message indicating the failure to
execute the Docker command.

32

Actual Result: The application displays an error message indicating the failure to execute
the Docker command.

Evaluation: This test was a success.

Test Case 2: Database Export Failure

Description: Validate that the application responds correctly when there is a failure in
exporting the database.

Steps:

1. Trigger a database export process that intentionally fails, such as by providing
incorrect database credentials.

Expected Result: The application provides an error message informing the user of the
database export failure.

Actual Result: The application provides an error message informing the user of the
database export failure.

Evaluation: This test was a success.

Test Case 3: General Exception Handling

Description: Ensure that the application handles unexpected exceptions gracefully.

Steps:

1. Introduce an unexpected exception in the application code, such as a runtime error.

Expected Result: The application presents an error message explaining the issue and
provides guidance on how to proceed.

Actual Result: The application presents an error message explaining the issue and
provides guidance on how to proceed.

Evaluation: This test was a success.

API Endpoints:
Test the API endpoints used for database export to ensure they handle requests properly
and return the expected responses.

Test Case 1: Export Endpoint Availability

Description: Verify that the export endpoint is accessible and responds correctly to HTTP
requests.

Steps:

1. Send a GET or POST request to the export endpoint ("/export").

33

Expected Result: The endpoint responds with a status code indicating success (e.g., 200
OK) or an appropriate error status code (e.g., 404 Not Found).

Actual Result: The endpoint responds with the expected status code.

Evaluation: This test was a success.

Test Case 2: Export Request Handling

Description: Ensure that the export endpoint properly handles export requests and initiates
the database export process.

Steps:

1. Send a POST request to the export endpoint ("/export").

2. Verify that the database export process is triggered.

Expected Result: The export endpoint initiates the database export process as expected.

Actual Result: The export endpoint successfully initiates the database export process.

Evaluation: This test was a success.

Test Case 3: Response Validation

Description: Validate the format and content of the response returned by the export
endpoint.

Steps:

1. Send a POST request to the export endpoint ("/export").

2. Receive the response from the endpoint.

Expected Result: The response contains the appropriate data, such as success or error
messages, in the expected format (e.g., JSON).

Actual Result: The response contains the expected data in the correct format.

Evaluation: This test was a success.

Frontend-Backend Interaction:
Validate the communication between the frontend and backend systems, ensuring that data
is transmitted correctly, and actions are executed as intended.

Test Case 1: Data Transmission

Description: Confirm that data is transmitted accurately from the frontend to the backend
during the database export process.

Steps:

1. Trigger the database export action from the frontend.

34

2. Monitor the data sent to the backend.

Expected Result: The relevant data, such as export parameters or user inputs, is
successfully transmitted to the backend.

Actual Result: The frontend correctly transmits the required data to the backend.

Evaluation: This test was a success.

Test Case 2: Action Execution

Description: Ensure that actions initiated by the frontend are executed correctly by the
backend.

Steps:

1. Trigger a database export action from the frontend.

2. Monitor the backend to verify the execution of the export process.

Expected Result: The backend correctly executes the requested action, such as exporting
the database, in response to frontend input.

Actual Result: The backend successfully executes the requested action triggered by the
frontend.

Evaluation: This test was a success.

Test Case 3: Response Handling

Description: Validate the frontend's handling of responses received from the backend.

Steps:

1. Trigger a database export action from the frontend.

2. Receive and process the response returned by the backend.

Expected Result: The frontend appropriately interprets and displays the response received
from the backend, such as success or error messages.

Actual Result: The frontend correctly handles and displays the response received from the
backend.

Evaluation: This test was a success.

Performance Testing:

Performance testing aims to evaluate how well the system performs under different
scenarios, such as varying load levels or database sizes.

Objective: 
The objective of performance testing is to assess the efficiency and responsiveness of the
database export feature under various conditions. This includes measuring the time taken to

35

complete the export process, evaluating system resource utilisation (such as CPU and
memory usage), and analysing network bandwidth usage. The goal is to ensure that the
feature meets performance requirements, maintains acceptable response times, and can
handle expected workloads without degradation in performance.

Test Environment:

Hardware Specifications:

▪ Device Name: AID-085

▪ Processor: 12th Gen Intel(R) Core(TM) i5-1235U @ 1.30 GHz

▪ Installed RAM: 8.00 GB (7.64 GB usable)

▪ System Type: 64-bit operating system, x64-based processor

▪ Operating System: Windows 10 Pro, Version 22H2 (Build 19045.4170)

▪ Network: Wi-Fi 5 (802.11ac), Network band: 5 GHz

Database Management System:

▪ Database: PostgreSQL

▪ Management Tool: pgAdmin4

Network Configuration:

▪ SSID: N.E.R.D.

▪ Security Type: WPA2-Enterprise

▪ Network band: 5 GHz

▪ Network channel: 36

▪ Link speed (Receive/Transmit): 400/400 (Mbps)

▪ Manufacturer: Realtek Semiconductor Corp.

▪ Description: Realtek RTL8852BE WiFi 6 802.11ax PCIe Adapter

Performance Testing Details

Software Dependencies:

▪ Node.js

▪ npm packages

▪ Docker

Browser Compatibility:

▪ Chrome

▪ Firefox

▪ Edge

36

Database Size and Schema:

▪ Current database size: 51 MB

▪ Schema:

▪ device_manager_group: Stores information about device manager groups.

▪ devices: Contains details of devices registered in the system.

▪ file_event: Tracks events related to file operations.

▪ fusion_reports: Stores fusion reports generated by the system.

▪ local_device_info: Stores information specific to local devices.

▪ metrics: Stores general metrics data.

▪ number_metrics: Stores numeric metrics data.

▪ ssa_masks: Contains data related to SSA masks.

▪ ssa_metrics: Stores SSA metrics data.

▪ Note: The database size used for testing may vary to simulate different scenarios.
During testing, various database sizes, such as 100 MB and 200 MB, will be used to
assess system performance under different data volumes.

Test Scenarios:

▪ Simulate various database export scenarios, including small and large database
sizes.

▪ Evaluate performance under different load levels and concurrent user interactions.

Performance Testing Tools:

▪ Custom script for measuring speed:

Figure 35 - Custom code to measure the time taken for the export process.

▪ Ubuntu System Monitor for monitoring memory usage.

37

Figure 36 - Ubuntu system monitor to measure the memory usage.

Performance Metrics:

▪ Time taken for the export process to finish.

▪ Memory usage of the export process.

Testing Environment Setup:

1. Ensure that the hardware and software dependencies are properly installed and
configured.

2. Set up the test database with realistic data and schema.

3. Configure performance testing tools to simulate load and monitor system metrics.

4. Execute performance tests according to predefined scenarios.

5. Collect and analyse performance metrics to identify bottlenecks and optimise
system performance.

Time (s) Memory Usage (KiB)

Test Database
Size (MB)

Time
1

Time
2

Time
3

Averag
e Time

Memory
Usage 1

Memory
Usage 2

Memor
y
Usage
2

Average
Memory
Usage

1 50 1.87 1.92 1.79 1.86 72 72 73 72.33

2 100 4.41 4.41 4.66 4.49 76 72 72 73.33

3 150 7.32 7.50 7.62 7.48 75 76 72 74.33

4 200 10.52 10.60 10.13 10.42 76 72 74 74.00

5 250 12.96 13.37 12.88 13.07 72 72 74 72.67

6 300 15.89 16.10 15.60 15.86 72 72 75 73.00

38

Figure 37 - Chart that shows the relationship between database size and export time.

Figure 38 - Chart that shows the relationship between database size and memory usage.

Performance Test Evaluation:

In evaluating the performance test results, it is evident that the time taken for the database
export process exhibited a consistent trend of increase as the database size increased. This
observation aligns with expectations, as larger databases naturally require more time for
export due to the greater volume of data involved. Despite this increase, the execution time
remained within acceptable bounds for the given database sizes, with no significant
deviations or anomalies observed.

7 350 18.54 18.66 18.64 18.61 72 72 76 73.33

8 400 21.43 22.06 21.26 21.58 72 74 68 71.33

9 450 23.77 23.52 24.02 23.77 72 76 72 73.33

10 500 28.47 27.25 26.68 27.47 76 72 76 74.67

Export Feature Speed

Ti
m

e
(s

)

0

7.5

15

22.5

30

0 50 100 150 200 250 300 350 400 450 500

Database Size (MB)

Export Feature Memory Usage

D
at

ab
as

e
Si

ze
 (M

B)

0

18.75

37.5

56.25

75

50 100 150 200 250 300 350 400 450 500

Memory Usage (Kib)

39

Regarding memory usage, it is noteworthy that the measurements remained relatively stable
across different database sizes. This consistency suggests that the memory requirements
for the export process did not significantly fluctuate with changes in the database size. Such
stability in memory usage is indicative of efficient resource management and suggests that
the application is able to handle varying database sizes without experiencing excessive
memory overhead.

Overall, while the execution time increased proportionally with the database size, the
performance remained within satisfactory levels, indicating that the database export feature
is capable of handling databases of different sizes effectively. These findings provide
valuable insights into the system's performance characteristics and serve as a basis for
further optimisation efforts to enhance overall efficiency and scalability.

Deployment:

For deployment to production, we utilise npm as our package manager and git for version
control. The deployment process involves several steps to ensure the smooth transition of
changes to the live environment.

Version Control with Git:

Each major change or feature addition undergoes version control using Git. This involves
staging and committing changes before pushing them to the server repository.

Figure 39 - Dashboard git log.

NPM Commands:

Navigate to Repository:

Initially, I navigate to the repository directory using the terminal on Ubuntu.

Terminal Setup:

Two additional terminals are opened, both already positioned in the repository directory.

40

Run Commands:

▪ In one terminal, I execute npm start. This command initiates the development
server, automatically opening a web browser with the dashboard application.

▪ In the second terminal, I run npm run build. This command generates the
production-ready build of the application.

▪ In the third terminal, npm run dev is executed. This command runs the application
in development mode, providing access to logs and other debugging information.

▪

Figure 40 - Terminal running 'npm start' command.

Figure 41 - Terminal running 'npm run build' command.

41

Figure 42- Terminal running 'npm run dev' command.

Monitoring and Debugging:

The terminal running npm run dev facilitates monitoring of logs and debugging during the
development process.

User Interaction:

Once the application is running, interaction with the dashboard is possible through the web
browser opened by npm start.

Please note that my involvement in the deployment process is limited, and I do not directly
interact with the end-stage deployment to the customer environment.

42

Maintenance:

After the deployment of the dashboard application, ongoing maintenance and support are
crucial to ensure its optimal performance and reliability. The maintenance phase involves
several key activities aimed at addressing issues, implementing updates, and providing
continuous support to users.

Bug Fixes and Issue Resolution:

▪ Regular monitoring of the application to identify and address any bugs or issues
encountered by users.

▪ Timely resolution of reported issues to maintain the functionality and usability of the
dashboard.

Software Updates and Enhancements:

▪ Implementation of software updates and patches to address security vulnerabilities and
improve performance.

▪ Incorporation of new features and enhancements based on user feedback and evolving
requirements.

Performance Monitoring and Optimisation:

▪ Continuous monitoring of application performance to identify and address any
performance bottlenecks or optimisation opportunities.

▪ Optimisation of code, database queries, and server configurations to improve overall
performance and responsiveness.

User Support and Training:

▪ Provision of user support to address queries, provide assistance, and troubleshoot
issues encountered by users.

▪ Conducting training sessions or providing documentation to ensure users are familiar
with the features and functionalities of the dashboard.

Backup and Disaster Recovery:

▪ Implementation and regular testing of backup procedures to ensure data integrity and
resilience against data loss.

▪ Development and testing of disaster recovery plans to minimise downtime and ensure
business continuity in the event of system failures or disasters.

Performance Reporting and Analysis:

▪ Generation of performance reports and analysis to track key metrics, identify trends, and
make data-driven decisions to improve the application's performance and user
experience.

Feedback Collection and Iterative Improvement:

▪ Regular collection of feedback from users to gather insights, identify areas for
improvement, and prioritise future development efforts.

43

▪ Iterative improvement of the dashboard based on user feedback and evolving business
needs to ensure its continued relevance and effectiveness.

Conclusion:

In conclusion, the development and implementation of the database export feature have
been a significant milestone for our team. Overall, I am pleased with the outcome of the
project, as it successfully addressed the need for a streamlined and efficient database
export process.

Project Outcome

The database export feature has received positive feedback from both my manager and the
end users. It has significantly improved the efficiency of exporting databases, saving
valuable time and effort for our team members. The feature has also enhanced the overall
user experience by providing a more intuitive and user-friendly interface.

Learning Experience

Throughout the project, I gained valuable insights into database management, software
development, and project management practices. I learned how to effectively plan and
execute a feature development cycle, including requirements gathering, design,
implementation, testing, and deployment. Additionally, I improved my collaboration and
communication skills through regular interaction with team members and stakeholders.

Areas for Improvement

While the database export feature meets the current requirements and expectations, there
are areas where it could be further improved in the future. This includes enhancing error
handling and logging mechanisms to provide more detailed feedback to users in case of
issues. Additionally, implementing automated testing and continuous integration practices
could help ensure the robustness and reliability of the feature across different environments.

Future Directions

Looking ahead, there are opportunities to expand the functionality of the database report
feature by integrating additional data export formats, such as CSV or Excel. Furthermore,
incorporating advanced analytics and reporting capabilities could provide users with deeper
insights into their database performance and usage patterns.

In conclusion, the database report feature has been a valuable addition to our system,
enhancing productivity and user satisfaction. I am grateful for the opportunity to work on this
project and look forward to contributing to future enhancements and developments.

44

	The Task:
	Feasibility Study:
	Scope Definition:
	Technical Feasibility:

	Requirements Analysis:
	User Story:
	Design:
	UI Component Design:
	UML Diagram:
	Pseudo Code:

	Development:
	Exporting the database:
	Initial front-end integration of a react button:
	ExportFunction File:
	Initial Testing:
	Docker Issues:
	Handling multiple running docker containers:
	Updating Database Export Command for File Path Location:
	Handling export success/failure using useState in React:
	Successful Implementation of Export Functionality:

	Testing:
	Unit Testing:
	Integration Testing:
	Performance Testing:

	Deployment:
	Maintenance:
	Conclusion:

