PROJECT ONE

Week In My Life

Abstract
This document provides a glimpse into my day-to-day experience, tasks, and
contributions during a typical work week as part of my apprenticeship

Alister David

alisterdavidd3@agmail . com

Contents

INTrOAUCTION:. ...ttt ettt 3
The COMPANY ...ttt s bbbt b e st e st b st e st e e b e nbesbesbesbenaennes 3
YA e o BN Lo =R 3
IQHQ Software Development Methodology:.............cocoiiiiiiiniinineeee e 4
The Roles Within IQHQL:.............oo e 4
Task 1: Adding Export Functionality to the Dashboard...................ccoccociiiiiiiie 6
SHUALION: ... 6
TASK ... 6
RESUIL:ottt sttt et 12
ReFIECHION:t nre 15
Task 2: Waterfall Data Capture..............ccooooiiieieeeceeeeeee et 16
SHUALION: ...t 16
TASK ... 16
ACTION: ...ttt b et r e e r e r e re e 17
RESUIL:t b e bbbt bbbt bbbt 28
REFIECHION: ...ttt sb bt 28
CONCIUSION: ...ttt b et nre e 29

Introduction:

My name is Alister, | am a software engineer apprentice at IQHQ. | have been
working at IQHQ since the 6™ of November 2023. This presentation provides a
glimpse into my day-to-day experience, tasks, and contributions during a typical work
week as part of my apprenticeship.

The Company:
IQHQ,

Defence & Security

IQHQ is one of the few waveform development companies within Europe. We
specialise in supporting the communications, intelligence, surveillance & security
markets by developing bespoke datalink and communication waveforms on
custom-designed hardware. On top of implementing communication waveforms,
IQHQ also tests and develops them rigorously. We leverage cutting-edge research
and techniques, offering virtually limitless control and configuration, resulting in a
true software defined radio or datalink when paired with the available hardware
packages.

IQHQ breaks limitations of application specific integrated circuits by allowing the
controlled configuration of every function within the firmware and hardware of their
technology. This provides optimised profiles, resilient to weaknesses in each use
case scenario. When considering interoperability, it also offers connectivity that
provides the information needed, where needed and when needed under a variety of
stressed link environments.

My Job Role:

Neil Bourhill,

As a Software Engineer Apprentice at IQHQ, | Managing Director

directly contribute to the dynamic software
development team. | will be working on improving ‘
and fixing existing technology as well as adding Matthew Wilcox,
new features. Software is an integral part of the Project Manager
company since it is used on every product, as well ‘
as the various systems to test and output the radio .

.. : i . Steve Smith,
communication systems. | am actively involved in

. : : Software Team Leader

hands-on experiences with using languages such
as JavaScript, TypeScript, Node.js, React & MUI for ‘
the Ul. My learning experience extends to database Reece Hussulbee,
management, specifically PostgreSQL for data Senior Software Engineer
persistence. In alignment with the broader project ‘
Ilfe”cyg:le aj:t IQH% my re?ponﬁlblll’tllfs mvo{ve Alister David,
collaborating with cross-functional teams to Software Engineer Apprentice

Figure SEQ Figure * ARABIC 1 - Team Structure

¢

translate project requirements into actionable tasks, ensuring the quality,
performance, and reliability of our software solutions. Through active participation in
design discussions, coding, testing, and debugging processes, | contribute to
delivering innovative software solutions that meet the needs of our customers and
drive the success of our organisation.

Software Development Life Cycle:

Stages and Inputs/Outputs of the Software Development Life Cycle (SDLC):

Feasibility Study:

In the feasibility study stage, the project's feasibility is assessed in terms of technical,
operational, and economic aspects.

Inputs: Inputs include project proposals, initial requirements, and market analysis.

Outputs: The main output is a feasibility report that determines whether the project is
viable and worth pursuing.

Requirement Analysis:

Requirement analysis involves gathering, documenting, and validating the functional
and non-functional requirements of the software.

Inputs: Inputs include stakeholder interviews, user surveys, and existing system
documentation.

Outputs: The output is a detailed software requirements specification document
(SRS) that serves as the basis for the design and development phases.

Design:

Design involves creating the architectural and detailed designs of the software based
on the requirements identified in the previous phase.

Inputs: Inputs include the requirements specification document, design principles,
and best practices.

Outputs: Outputs include high-level architectural designs, detailed design
specifications, database schemas, and user interface mock-ups.

Code Development:

Code development is the implementation of the software based on the designs
created in the previous phase.

Inputs: Inputs include the design documents, programming languages, and coding
standards.

Outputs: The primary output is the executable code or software product, along with
unit test cases and documentation.

Testing:

Testing involves verifying and validating the functionality, performance, and reliability
of the software.

Inputs: Inputs include the software product, test plans, and test cases.

Outputs: Outputs include test reports, defect logs, and updated documentation. The
goal is to ensure that the software meets the specified requirements and quality
standards.

Deployment:

Deployment is the process of releasing the software to the production environment
for end-users to access and utilise.

Inputs: Inputs include the tested and approved software product, deployment plans,
and user training materials.

Outputs: Outputs include deployed software instances, configuration settings, user
manuals, and training records.

Maintenance:

Maintenance involves ongoing support and enhancement of the deployed software
to address issues and incorporate new features.

Inputs: Inputs include user feedback, bug reports, and change requests.

Outputs: Outputs include software updates, patches, bug fixes, and documentation
updates. The goal is to ensure the continued functionality, security, and usability of
the software over time.

Software Development Methodologies:
Agile:

Agile is a form of an iterative development method, which is a way of breaking down
the software development life cycle of a large application into small chunks. In
iterative development, feature code is designed, developed & tested in repeated

cycles.
BUILD
= B, DESIGN
78]

—

CJ
DEVELOPMENT
PHASE

DESIGN

DEVELOPMENT

TEST PHASE

DISCOVERY DEPLOYMENT DISCOVERY DEPLOYMENT
PHASE PHASE PHASE PHASE

Figure SEQ Figure * ARABIC 2 - Agile Model

Agile allows for more flexibility when it comes to making changes. It is flexible, fast
and aims for continuous improvements in quality. The agile methodology is a people
focused, results focused approach to software development in a dynamic world. It is
centred around adoptive planning, self-organisation & short delivery times. Some
examples of Agile models include Scrum, Kanban, and XP.

Agile Manifesto:

= Working software over comprehensive documentation.
= Customer collaboration over contract negotiation.
= Responding to change over following a plan.

= Individuals & interactions over process and tools.

Advantages of Agile:

Agile is a realistic approach for software development because it doesn't overload
the project team with unrealistic demands. It enables rapid development and testing
of functionalities, saving time and resources. Whether the requirements are fixed or

subject to change, Agile adapts well, allowing for early delivery of partially working
solutions. With minimal planning required, Agile is easy to manage and provides
flexibility to developers to adjust as needed. Overall, Agile streamlines the
development process, making it efficient and practical for teams to deliver
high-quality software products.

Disadvantages of Agile:

Agile, while advantageous in many respects, presents certain drawbacks. It may not
handle complex dependencies well and might face difficulties in projects with many
interconnected parts. This can lead to challenges in managing and coordinating
various aspects of the development process. Moreover, there's a higher risk
concerning the sustainability, maintainability, and extensibility of the software created
under Agile methodologies. To overcome these challenges effectively, a detailed
overall plan and strong Agile leadership become crucial. Additionally, strict delivery
management is necessary to ensure that projects stay on track and meet deadlines.
Furthermore, Agile heavily relies on customer interaction, which, while beneficial for
understanding needs, can also introduce uncertainties and delays. Lastly, the
approach often lacks thorough documentation, which can slow down knowledge
transfer and future development efforts.

Waterfall:

Waterfall is a step-by-step approach where tasks follow a linear order. Each stage
must finish before the next one begins. It's known for being well-documented with
clear requirements that don't change much. The technology used is stable and
doesn't change often. Waterfall projects usually have a fixed plan and use plenty of
resources. They also tend to be shorter in duration.

B

Figure 3 - Waterfall Model
Advantages of Waterfall:

Waterfall methodology offers several advantages, including the ability to
departmentalise tasks and maintain control over the project's progression. By setting
a schedule with deadlines for each stage, teams can effectively manage their time
and resources. The strict sequential order of phases simplifies the process, making it
easy to understand and implement, especially for smaller projects. Additionally, the
well-defined milestones provide clear checkpoints for progress evaluation. This
structure makes arranging tasks straightforward, ensuring a systematic and
organised approach to project development. Overall, the Waterfall methodology
facilitates efficient project management through its clear structure and manageable
stages.

Disadvantages of Waterfall:

Waterfall methodology also presents several disadvantages. Firstly, because it
follows a sequential approach, no working software is produced until late in the
cycle, which can lead to delayed feedback and potential issues with meeting project
objectives. Additionally, the high amount of risk and uncertainty is inherent in
Waterfall due to the lack of flexibility to adapt to changing requirements or
unforeseen challenges. There's limited room for reflection or revision throughout the
process, making it challenging to address issues as they arise. Moreover, Waterfall is
not well-suited for complex or object-oriented projects, nor for long-term or ongoing

development models, as it struggles to accommodate dynamic requirements and
changes over time. Progress measurement within each stage can be difficult.

Agile & Waterfall Comparison:

Aspect Agile

Approach Iterative and flexible

Feedback Early and continuous

Embraces change and adapts
easily
Dynamic and evolving

Risk Management

Requirements

Collaborative and
decentralised

Minimal, focuses on working
software

Iterative, with regular
checkpoints

Well-suited for dynamic and
complex projects
Continuous integration
throughout the project
Offers flexibility to
accommodate changes
Regular communication and
collaboration

Efficient use of resources,
shorter timelines

Adapts well to changing
requirements

Figure 4 - Agile & Waterfall Comparison Table

Project Control
Documentation
Progress Measurement
Suitable Projects
Integration

Flexibility
Communication

Time and Resources

Adaptability

Waterfall
Sequential and rigid

Late and limited

High risk due to inflexible
structure
Fixed and established

Centralised and
departmentalised
Comprehensive, emphasises
documentation

Difficult, mainly at the
completion of each stage
Better for simpler,
well-defined projects
Integration at the end of the
project

Limited flexibility, changes
may be difficult to implement
Less emphasis on continuous
collaboration

Uses ample resources, longer
timelines

Limited adaptability to
changes during development

Software Development Methodology At IQHQ:

At IQHQ, choosing the right software development methodology is an important part
of completing our projects. Since each project tends to vary, we must adapt our
software development methodology to accommodate the unique requirements and
challenges of each project. While Agile methodologies such as Scrum and Kanban
offer flexibility and adaptability to changing requirements, the Waterfall methodology
may be preferred for projects with well-defined and stable requirements.

For example, in our research and development projects, where the requirements
may constantly change, we often adopt Agile methodologies to accommodate
iterative development cycles and frequent feedback from stakeholders. On the other
hand, for production-focused projects with clearly defined requirements and
timelines, we turn to the Waterfall methodology to ensure we reach our milestones
and meet the deadline.

By carefully evaluating the similarities and differences between different software
development methodologies, we can tailor our approach to suit the specific needs of
each project, allowing us to be as efficient as possible and deliver on time.

The Roles Within IQHQ:

At IQHQ, our software development life cycle is driven by a diverse team of
professionals, each playing a crucial role in delivering innovative solutions to our
clients. From project management to technical leadership and software engineering,
we have various roles that contribute to every stage of our development process.

Managing Director:

The Managing Director provides strategic direction and leadership for the
organisation. They set overall goals and priorities, ensuring the effective operation of
the company.

Project Manager:

The Project Manager oversees the planning, execution, and delivery of software
development projects. They define project scope, allocate resources, manage
budgets, and communicate project status to stakeholders.

Chief Engineer:

The Chief Engineer provides technical leadership and guidance for software
development projects. They define technical standards and best practices, conduct
design reviews, and mentor junior engineers.

10

Software Team Leader:

The Software Team Leader manages and coordinates the efforts of the software
development team. They assign tasks, monitor progress, resolve conflicts, and
provide technical guidance and support to team members.

Software Engineers:

Software Engineers design, code, test, and debug software solutions. They translate
project requirements into software implementations, ensuring the quality,
performance, and reliability of the final product.

Firmware Team Lead:

The Firmware Team Lead oversees the development of firmware solutions for
hardware products. They define firmware requirements, architect firmware solutions,
and coordinate firmware development efforts with other teams.

Hardware Engineers:

Hardware Engineers design and develop hardware solutions for products. They
collaborate closely with software engineers to ensure compatibility and
interoperability between hardware and software components.

Production Team:

The Production Team assembles and tests products. While not directly involved in
software development, they ensure the quality and reliability of the final product
through rigorous testing and quality control measures.

Quality Assurance Team:

Our QA team is responsible for ensuring the quality and reliability of our software
solutions. They develop and execute test plans, identify and report defects, and
collaborate with software engineers to resolve issues promptly. By maintaining
rigorous testing standards, they help uphold our commitment to delivering robust and
error-free software products.

11

Task 1: Adding Export Functionality to the Dashboard

Situation:

Throughout Monday and Tuesday of the week, my primary task was to implement an
export functionality on the dashboard interface at IQHQ. This feature aimed to
enable the export of database logs to customers post-demonstrations, enhancing our
product's utility and customer satisfaction.

Task:

My objective was to integrate an export button into the dashboard Ul, allowing users
to export database logs to their devices.

Engineering Tasks

1gHG Bashboard-ExportFunction

Completed on O

—e AD Alister David

Add label

Bucket Progress Priority
Alister David @ Completed Medium
Start date Due date Repeat

Due anytime

|:| Show on card

The Dashboard requires a form of export such as csv for us to be able to give data logs to customers post
demos. This will likely take the form of a csv but the design of such will need some brainstorming.

Checklist

() Add an item
Attachments

Add attachment

Figure 5 - Dashboard Export Function Task on Teams

12

Database Planning:

Before | began this task, it was crucial that | had a good understanding of the
database structure and management. At IQHQ, we use PostgreSQL, a relational
database management system (RDBMS), known for its robustness and flexibility.
Relational databases organise data into tables, each with a predefined schema, and
use structured query language (SQL) for data manipulation and retrieval. In contrast,
non-relational databases, like MongoDB or Cassandra, store data in a more flexible
format, such as JSON documents or key-value pairs. Understanding the differences
between relational and non-relational databases is essential for choosing the right
database solution for specific project requirements. If | needed to use an SQL
database instead of PostgreSQL, | would have followed similar steps but adjusted
the SQL queries accordingly.

Action:

My first step was to find out how to export the database using Docker. After
identifying the relevant image name with the command ‘docker ps’, | researched and
found the right command to download the database. | utilised the child_process
module from Node.js to add a file called exportFunction, containing code to
pg_dumpall the database. Simultaneously, | integrated an export button into the
dashboard using React components, although it had no functionality initially, logging
only ‘Button Clicked’.

1 alister@AID-039: fopt/rep

- $ docker ps
CONTAINER ID IMAGE COMMAND CREATED
d14ae2ba7506c timescale/timescaledb:latest-pgil2 "docker-entrypoint.s..’ days ago
fac9866bf33b timescale/timescaledb:latest-pgil2 "docker-entrypoint. days ago
ddapsddfg791 timescale/timescaledb:latest-pgi2 "docker-entrypoint. days ago
1b8f64a8b246 timescale/timescaledb:latest-pgi2 "docker-entrypoint. days ago
fif2c7a8afsd timescale/timescaledb:latest-pgil2 "docker-entrypoint. days ago
195dba25e5a7 timescale/timescaledb:latest-pgil2 "docker-entrypoint. days ago
5ff155elee71 timescale/timescaledb:latest-pgi2 "docker-entrypoint. 11 days ago
f15250bdd2b8 timescale/timescaledb:latest-pgi2 "docker-entrypoint. 5 weeks ago

z Sl
ActionType.ts CreatePreserverQueryHistory.ts exportFunc.js
ComplexDateSerialisation.ts Config.ts DisplayInfo.ts GraphPersistenceManager.t

E $ node exportFunc.js

L7 T T T ¥ R ¥ R T

Command stdout:

Database Exported Successfully
- $ 1s -sh

total 29M

4.0K ActionType.ts 4.0K Config.ts 29M dump_11-12-2023_160_ 47 _

4.0K ComplexDateSerialisation.ts 4.0K CreatePreserverQueryHistory.ts 4.0K exportFunc.]js

4.0K 8.0K DisplayInfo.ts 16K GraphPersistenceManage

S |

Figure 6 - Terminal running docker ps.

13

error.m

24 exportDat

urces

6 lssues: H 6

Download the Rea & ette elopment
experience: htt

[J Advanced

Figure 8 - React button logging 'Button Clicked".

14

return |
Toolbar
Grid container
Ipro isSidebarOpen
1 item=<IconButton onClick={props.onSidebarOpen}
enu
conButton Grid

style={{
flexGrow: 1,

onComplete={ (ok) {
console.log('Button Clicked

ki

EXPORT DATABASE
HTTPTrigg)

Grid

Figure 9 - Code for the react export button.

Issues arose when attempting to export the database, encountering errors while
viewing the PostgreSQL table in the terminal. Additionally, the child_process module
functioned exclusively on the server-side, hindering front-end execution. | realised
each terminal command run created a new Docker container, leading to multiple
restarting containers. Therefore, | need to implement some sort of filter in my
exportFunction file that will only use the running container ID. To resolve these
challenges, | focused on shifting the export function to the backend, collaborating
with the software team to establish frontend-backend communication.

By the end of Monday, | was able to manually export the database and view its
contents. | had added a React button as a placeholder for a function React button to
export the database.

On Tuesday, my primary goal was to relocate the exportFunction to the backend.
With assistance from the software team, | moved the code to a new file called
ExportFunction.ts. Initially, | encountered difficulties retrieving the correct container
ID, as multiple containers with the same imageName caused confusion. | created a
function called getContainerlds, which takes the imageName to return the container
ID of a running container.

15

Figure 10 - Function that gets the running IDs.

| was able to take parts of existing code from another file that handled a POST
request for exporting the database. The route triggered an asynchronous database
export, ensuring that the database dump was running in the background,
simultaneously with other processes.

nd();

PStatus.INTERNAL SERVER_ERROR).send(e);

Figure 11 - Route that triggers the database export.

After speaking with the software team, | realised a potential issue that the user could
run into was when there were multiple running containers using the same
imageName. Since the getContainerlds function returned a string of running
containers, | split the string into a list and changed the exec command so it would
only use the first item in the list. If more than one running container is found, then
this issue is logged to let the user know that the wrong running container may be
being used. | used the alert method to display a warning on the Ul if multiple running
containers were found.

16

containerList = all(rids 7 a tainerIds.split("\n") :

containerId

Figure 12 - Complete code for database export.

In the front end, | began by adding a useState from React hook, allowing me to
change the state of the functional component. | added two functions to handle a
successful export and an unsuccessful export. If the export was successful, an alert
was presented on the Ul, and vice versa. Within the React button component, if it
received an HTTPStatus.ok from the ExportFunction, then the program would
present the successful export message. If it received any errors, then it would
present an unsuccessful error message. | was also able to move the button out from
the device view section to the main toolbar.

17

, {undoLastChange}] ceComplexTimeRange
tSuccess] es

Figure 13 - Handling a successful and unsuccessful database export.

onClick={props.on5idebarOpen}

Figure 14 - React button for exporting the database.

Initially, the ExportFunction file did not work as expected. After some investigation, |
was able to deduce that the ExportFunction route was not added to the main API
routes in the index.ts file. This oversight meant that the ExportFunction was not
recognised or accessible by the application, leading to the failure of the export

18

process. Therefore, | added the ExportFunction route to the list of API routes in the
index.ts file.

Figure 15 - Adding the export function route to the list of API routes.

While working on this task, | ended up having many containers, the majority of which
were restarting. This was not ideal. | was able to stop and remove all the restarting
Docker containers manually, and | used pgAdmin to use the PostgreSQL terminal for
database queries.

19

Result:

After rigorous debugging and refinement, | successfully implemented the export
button on the dashboard interface. Despite encountering initial challenges with
database export errors and frontend-backend communication, | managed to
overcome them through effective problem-solving and collaboration with my peers.
As a result, the export function works as intended, allowing users to now export the
database for further analysis.

LAST 5 MINUTES | @ -@%

Show All Network ID~

Metrics [] Advanced [] Enable Changes

O Metric time value
O Network ID Afew seconds ago #0

[:I Device Type A few seconds ago SSA

ighg-ssa-1

192.168.1.128

Figure 16 - Ul dashboard with the export database button added.

20

localhost:8080 says

Export Successful

Show All *

Metrics [J Advanced [Enable Changes

O Metric time value
a Network 1D Afew seconds ago #0

Device Type A few seconds ago SSA

Figure 17 - The result of a successful database export.

Desktop -

Recent
Starred

Home

Desktop

dump_12-02-2024 13 48 32.
Documents sql

Figure 18 - The exported database file in the desktop directory.

21

dump_12-02-2024_13_48_32.5ql
Zl:

SET default_transaction_read_only = off;

SET client_encoding = 'UTF8';
SET standard_conforming_strings = on;

DROP ROLE postgres;

CREATE ROLE postgres;
ALTER ROLE postgres WITH S . REATEDB LOGIN REPLICATION
BYPASSRLS PASSWORD 'md . 3C9e0S o

SQL ¥ Tabwidth:8 v Ln1, Col1

Figure 19 - The contents of the exported database file.

Reflection:

Throughout this task, | acquired valuable insights into database management,
Docker utilisation, and front-end-backend integration. Working with technologies like
JavaScript, TypeScript, and React deepened my understanding of frontend
development, particularly React components and state management. Additionally,
collaborating with the software team facilitated knowledge exchange and skill
enhancement, enriching my overall learning experience.

Although the team was satisfied with my addition of the export feature, there are a
few improvements | can think of to improve the usability of this feature. Currently the
exported database is saved to the user's desktop directory on their device; in the
future it would be more useful for the user to choose where to store the file. There

22

should also be the option to choose a filename, since saving the export by the date
is not truly relevant or specific.

Task 2: Waterfall Data Capture

Situation:

Over the course of three days, from Wednesday, my primary objective was to
capture waterfall data from one of our radio devices, the SSA and store itin a
database, aligning with project requirements and enhancing data management
capabilities. | also had to provide various stats on the data capture process.

Task:

My objective was to store SSA data into its own table within the database efficiently.
Provide stats on the data capture process, including the capture rate, an ETA and
disk usage analysis. | also needed to add a button that would start and stop the data
capture process.

23

Engi g Tasks

SSA Waterfall Data Capture

Last chang 1 eece Husselbee

Add label

Bucket Progress Priority

Alister David - In progress Medium

Start date Due date Repeat

Future task: (non urgent). To capture and store waterfall data from the 5SA. Note the "API' for this is in the
User Manual - see Appendix A of the User Manual on Z\Projects_Active\2023-103-QinetiQ-55A. If you
don't have access to this document please ask Neil B or Steve Gregory

Note some future user requirements might also be:

to recover and plot historical data.

to record data for long periods of time - e.g. during a mission lasting several hours.

to cope with large data files

to potentially manually parse within a dataset and find SOls (signals of interest) - these might be
signals on certain frequency ranges, or signals exceeding specific power levels. This will need some
thought, and probably a design meeting to iron out.

Checklist

Add an item

Attachments

Figure 20 - SSA waterfall data capture task on teams.

24

SSA (Spectrum Situational Awareness):

Use:

Radio spectrum monitering technology, designed for detecting radio transmissions of interest.

ST T
ul HTTR Server P—

“"'--_____.—-"/
554
werta p— | ossnvous |

Requirements:

= Export SSA metrics to the database.

= Move SSA plugin into the dashboard, so that it can be sent with the other metrics.

= Find a method to manage data base size.

= Provide warnings to users if chosen 55A settings could lead to excessive data volume.

Future Features:

= Allow pre-filtering of SSA data based on power level ranges.

= Utilize data retention with periodic deletion to manage database size effectively.

= Give users the option to save all 5SA metrics permanently, using an archiving or
alternative storage approach.

Steps:

1. Add ssametrics table to the database.

Write method to store SSA metrics to the database.
Export SSA metrics to the database.

Incorporate SSA plugin to the main dashboard.

PowoN

Figure 21 - Initial planning & requirements for the SSA waterfall data capture.

Action:

After breaking down the task into manageable steps, | began working on my first
step, which was to add a table for the SSA metrics into the database. There are four
main values that need to be recorded in the database table: device ID, time, power &
frequency. There are eight tables in the dashboard; therefore, | was able to use
pre-existing code from the other tables to create a table for SSA metrics. After
several adjustments, | successfully added an SSA metrics table using PostgreSQL
queries.

25

Visual Studio Code

File Edit Selection WView Go Run Terminal Help
SSAMetricsts ®

Models SSAMetnics.ts

L connection
t { WebSocketInterfacePacket

S5AMetric = {
deviceID: number,
time:
power:
frequency:

tableName =

console.log('1l")

createTableIfNotExists()

}

console.log(

insertSSAMetrics(
ketInterfacePs

Date().getTime

ssaMetrics : SSAMetric[] = Object.entries(metrics.powerLevels).map(([key, value]
{

devicelID: 1,

time: time

power:

frequency:

ssaMetrics.mapl|(metric
useValue(metric.deviceID)}, TO TIMESTAMFP useValue(metric.time)
| useValue(metric.power)}, useValue(metric.frequency)

Figure 22 - File containing the code to set up the PostgreSQL table for ssa_metrics.

Visual Studio Code =

File Edit Selection View Go Run Terminal Help

SSAMetricsts X

console.log("3")
parseSS5AMetric(row: any): SSA

deviceID: MNumber|row.devicelID),
time: Date(row.time).getTime
power: Number(row.power),
Tfrequency: Number(row.frequency),

select(opts?: deviceID: number
values: any[] = [];
useValue = (val: any):
values.push(val);
return $5{values.length} ;

whereClauses: stringl
queryValues = [];

opts?.devicelID !'== i
whereClauses.push(deviceID useValue(opts.devicelD)

tableName

whereClauses.length ? "WHERE " + whereClauses.join

awalt connection.runQuery(query, gueryValues);

"OWS . FOWS . map (row parseSSAMetric(row

count() {
wait connection.runQuery
5 COUNT (*) FROM S{tableName};

8] .count;

ort {
createTablelfNotExists,
insertSSAMetrics,
select,

count,

}

3§ 46810515 O

Figure 23 - File containing the code to set up the PostgreSQL table for ssa_metrics continued

| used pgAdmin to test if the table was created using psql commands, the table was
successfully added. The next step was to figure out how to add data to the table. |
added a file called testSSAMetrics, in which | created a function which would add
sample data to the table.

ics, SSAMetric } from '

testSSAMetrics ()

Figure 24 - Function to test adding sample data to the ssa_metrics table.

| initially had an issue with the testSSAMetrics function since it was not working as
intended. After adding logs, it seemed that the function was not being executed in
the right order. After speaking with my team, | found out the Issue was caused by not
using an async function. Using a regular function meant that my code was
preventing other tasks from executing while waiting for asynchronous operations to
complete. To address this issue, | modified the function responsible for adding test
data to the PostgreSQL table to be an asynchronous function. This change allows
the program to continue its execution while waiting for asynchronous operations,
preventing unnecessary delays.

My primary goal for Thursday was to find a way to upload the SSA metrics coming
from the SSA straight into the PostgreSQL table. | was able to locate a file called
index within the SSA directory, which was initialising the SSA server. | added a
function called addDataBaseListener to this file, which establishes a WebSocket

28

connection and adds the SSA metrics to the database using the insertSSAMetrics
function from the SSAMetrics file.

, error);

Figure 25 - Function that established a WebSocket connection and inserts the SSA data into the ssa_metrics table.

| then added this function to the index file within the source directory so that the
function was executed after all the SSA plugins had been set up. | also had to
ensure the webSocketInterfacePacket, which serves as a data structure for the SSA
metrics, was being exported from the WebsocketManager file so it could be used to
get the SSA data for the SSA index file.

29

await startup:
https

Figure 27 - Exporting WebSocketInterfacePacket from the WebSocketManager file.

publicIndex

30

Currently, the webSocketInterfacePacket does not hold the device ID; instead, it
uses the stream ID, which is not what is needed according to the project
requirements. Therefore, | would need to find a way to upload device ID externally or
by adding it to the data structure; however, that would require a lot of changes
throughout the whole program since it could affect other areas.

After some investigation, | found out that with the current rate, there was 28mb of
data being uploaded per minute; therefore, some steps will need to be taken to
reduce this amount and make the process more efficient. By changing the data
types of the database fields. Initially, device ID had the BIGINT data type, which
meant it was storing eight-byte integers. This was unnecessary since the device ID
can be stored using INT, which stores four-byte integers. Changing the data type of
the device ID field reduced the size of the data being uploaded per minute by a few
MB.

On Friday, | started by reviewing my approach to ensure it aligned with the project
requirements. | outlined my next steps, including displaying the upload rate in
MB/Sec, providing an estimated time of arrival (ETA) to indicate the remaining
duration for data capture at the current upload rate, and presenting the remaining
disk space on the device. | also need to add device ID to the database and ensure
the seamless functionality of the buttons for initiating and stopping the data capture
process.

AD Alister David 21 December 2023 13:49

Next steps:
- Add device Id

- Button to begin data capture

- Display rate of upload MB/sec

- Disk space analyser

- ETA, how much longer ssa can capture data with current rate of data upload

Figure 28 - Planning out next steps in teams.

| created a file called DataCapturelnfo.ts, which will hold functions to calculate the
various data capture stats. | began by creating a function called getDiskSpace that
would use the child_process module and the exec command to get the disk space
in bytes. The function returns the available disk space in gigabytes. | added
another function called getSSASize that runs a table size query on the
SSA_metrics table. This function returns the SSA_metrics table size in megabytes.
My idea behind calculating the capture rate was to constantly add the SSA_metrics
table size to a list, and once the length of the list reaches a hundred, | would
calculate the average of the difference between each consecutive item in the list. |
would use this value to calculate the eta using the formula ETA = available
space/capture rate. | created the function getDataCaptureRate that would do
exactly that using the findAverageDifference function that returns the average of

31

the difference between each consecutive item in a list. The getDataCaptureRate
function returns a list containing the eta followed by the capture rate.

12Feb 14:36 »

DataCapturelnfo.ts - dashboard-api - Visual Studio Code

DataCapturelnfo.ts

DataCapturelnfo.ts
ort connection from
ort { exec } from "child_proce
ort { promisify } from "util";

execAsync = promisify(exec);

getDiskSpace

stdou await execAsync

185 =

' 1024;

f1024) .toFixed(2);
catch (error
console.error(Error getting disk space: ${error.message
throw error;

getDatabaseS5ize = ()}: Promise<number>

alt connection. runQuery
ng = db_result.rows[0].size;

- parseInt(sizeString.replace(

console.error
throw error;

getSS5ASize =

console.error
throw error;

s += Math.abs(diff

umOfDifferences / (arr.length - 1);

*10) . toFixed(2

n getDataCaptureRate;

getDataCaptureRate = createDataCaptureRateFunction();

Figure 30 - Function to find the data capture rate and ETA.

| had all the values logged for testing purposes to see if setting the list limit to one
hundred was the right number or whether that number was too high. | made sure to
place all the relevant functions in the index file so | could view the logs.

33

Listener()

errorj ;

Data Base: 119 MB
ssa_metrics: 106 MB
Disk Space Available: 791.

Data Base: 119 MB
ssa_metrics: 106 MB
Disk Space Available: 791.

Data Base: 119 MB
ssa_metrics: 106 MB
Disk Space Available: 791.

Capture Rate: 0.61 MB/s
Capture ETA: 369.21 hrs

Data Base: 119 MB
ssa_metrics: 106 MB
Disk Space Available: 791.

Data Base: 119 MB
ssa_metrics: 106 MB
Disk Space Available: 791.

Data Base: 119 MB
ssa_metrics: 106 MB

[Ry PR e SO L ey o B e o e J o W o + 1

Figure 32 - Initial results of the data capture stats implementation.

After manually checking the capture rate by recording the size of the SSA_metrics
table before and after a period of time. The capture logged using the getCaptureRate
function was not always accurate. This makes sense since you would not be viewing
the live capture rate because, by the time the function returns the average from a list
of a hundred, the actual capture rate would have changed. A better way to calculate
the average would be to have two variables, one to hold the values of the previous
SSA_metrics table size and one that holds the new size. You would also need other
variables, one to calculate the time of finding the previous table size and a
timestamp of the new table size. Then, to calculate the live capture rate, you would
use the formula capture rate = (new table size - old table size) / (new time - old time).
This would give you a more accurate representation of the capture rate and,
therefore, a more accurate eta.

rrentTableSize: number, currentTime: number): woid {

getDataCaptureRate =

updateInitialValues(curren

ait execAsync('df -k

p 1i

; Brrarj;

Figure 33 - Updated function to find the capture rate and ETA.

35

Result:

As a result of my efforts over the three days, | successfully achieved the objectives
outlined in the task. | established a robust process for capturing waterfall data from
the SSA device and storing it efficiently in the database. Additionally, | implemented
functionalities to provide insightful statistics on the data capture process, including
the capture rate, an ETA, and disk usage analysis. By addressing issues and refining
the methods iteratively, such as optimising data types and ensuring asynchronous
operations, | enhanced the overall efficiency and accuracy of the data capture
system. Despite encountering challenges along the way, such as inaccuracies in the
initial capture rate calculations, | implemented a more accurate method for
calculating the live capture rate. Overall, the project was completed successfully,
meeting the project requirements and laying a solid foundation for future
enhancements and optimisations.

[+ alister@AID-039: fopt/repos/dashboard/dashboard-api Q

alister@AID-039: fop... alister@AID-039: fop... alister@AID-039: fop...

Data Base: 191 MB

ssa_metrics:
Disk Space:

Capture Rate:

Capture ETA:

Data Base:
ssa_metrics:
Disk Space:

Capture Rate:

Data Base:
ssa_metrics:
Disk Space:

Capture Rate:

Capture ETA:

Figure 34 - Results of the data capture stats implementation.

178 MB
791.68 GB
0.58 MB/s
1397802.19 hrs

178 MB
791.68 GB
0.73 MB/s
1116827.97 hrs

191 MB
178 MB

791.68 GB

0.64 MB/s
1274102.70 hrs

Reflection:

In my recent learning journey, | have mastered creating database tables using
PostgreSQL queries and testing them with tools like pgAdmin. Understanding how to
structure tables for specific metrics was crucial. | realised the importance of using
asynchronous functions for tasks like database operations to avoid delays caused by
synchronous functions. Additionally, | learned how choosing the right data types
directly impacts efficiency. These experiences gave me practical insights into system
integration and WebSocket connections with databases. | was able to understand
the importance of modularity when | began working on the dataCapturelnfo file. |
tried fitting everything into one function, which led to confusion and decreased the
readability of the code. By using separate functions, it was easier to read and
understand the code, and | was able to reuse functions. | was able to explore
alternative algorithms to find an accurate capture rate. | was also able to exercise my
knowledge of the child_process module as well as async functions.

There are numerous ways to improve the functionality and efficiency of the current
data capture process. The user is given the ability to choose the SSA settings
manually on the dashboard, which directly affects the size of the data received from
the SSA and being uploaded to the database. To prevent capturing excessive data
volumes, a warning could be displayed to let the user know that the chosen settings
could affect the database. A more effective way to manage the capture rate is to
abstract the data, being received, therefore only storing values which could be
relevant to the user. Building on this method of data storage, the user could select a
specific range of data to store rather than storing all incoming data from the SSA.

Conclusion:

In conclusion, my recent tasks at IQHQ have provided invaluable learning
experiences in database management, frontend-backend integration, and system
optimisation. By implementing export functionality on the dashboard interface and
capturing waterfall data from the SSA device, | expanded my skills in utilising
technologies like PostgreSQL, Docker, and React, while also gaining insights into
efficient data storage and retrieval techniques. Through collaboration with colleagues
and iterative problem-solving, | successfully overcame challenges and delivered
solutions that met project objectives. Reflecting on these experiences, | recognise
the importance of modularity in code organisation and the significance of choosing
the right tools and algorithms for optimal performance. Moving forward, there are
several opportunities for further enhancements, such as refining the data capture
processes, providing more user control over data management, and improving data
visualisation capabilities. Overall, these tasks have not only expanded my technical
skill set but also deepened my understanding of effective software development
practices, setting a solid foundation for future projects.

37

	
	Introduction:
	The Company:
	My Job Role:
	Software Development Life Cycle:
	Software Development Methodologies:
	Agile:
	Waterfall:
	Agile & Waterfall Comparison:

	Software Development Methodology At IQHQ:
	The Roles Within IQHQ:
	Task 1: Adding Export Functionality to the Dashboard
	Situation:
	Task:
	Database Planning:
	Action:
	Result:
	Reflection:

	Task 2: Waterfall Data Capture
	Situation:
	Task:
	Action:
	Result:
	Reflection:

	Conclusion:

