
 

 

1 
 



Contents 

 

Introduction:........................................................................................................................................3 

The Company:.................................................................................................................................... 3 

My Job Role:....................................................................................................................................... 3 

IQHQ Software Development Methodology:...............................................................................4 

The Roles Within IQHQ:................................................................................................................... 4 

Task 1: Adding Export Functionality to the Dashboard...........................................................6 

Situation:..........................................................................................................................................6 

Task:..................................................................................................................................................6 

Result:............................................................................................................................................ 12 

Reflection:..................................................................................................................................... 15 

Task 2: Waterfall Data Capture..................................................................................................... 16 

Situation:........................................................................................................................................16 

Task:................................................................................................................................................16 

Action:............................................................................................................................................ 17 

Result:............................................................................................................................................ 28 

Reflection:..................................................................................................................................... 28 

Conclusion:....................................................................................................................................... 29 

 

 
 
 

 

 

 

 

 

 

 

2 
 



Introduction: 

My name is Alister, I am a software engineer apprentice at IQHQ. I have been 
working at IQHQ since the 6th of November 2023. This presentation provides a 
glimpse into my day-to-day experience, tasks, and contributions during a typical work 
week as part of my apprenticeship. 

 

The Company: 

IQHQ, 
Defence & Security 

IQHQ is one of the few waveform development companies within Europe. We 
specialise in supporting the communications, intelligence, surveillance & security 
markets by developing bespoke datalink and communication waveforms on 
custom-designed hardware. On top of implementing communication waveforms, 
IQHQ also tests and develops them rigorously. We leverage cutting-edge research 
and techniques, offering virtually limitless control and configuration, resulting in a 
true software defined radio or datalink when paired with the available hardware 
packages. 

IQHQ breaks limitations of application specific integrated circuits by allowing the 
controlled configuration of every function within the firmware and hardware of their 
technology. This provides optimised profiles, resilient to weaknesses in each use 
case scenario. When considering interoperability, it also offers connectivity that 
provides the information needed, where needed and when needed under a variety of 
stressed link environments. 

My Job Role: 
 

As a Software Engineer Apprentice at IQHQ, I 
directly contribute to the dynamic software 
development team. I will be working on improving 
and fixing existing technology as well as adding 
new features. Software is an integral part of the 
company since it is used on every product, as well 
as the various systems to test and output the radio 
communication systems. I am actively involved in 
hands-on experiences with using languages such 
as JavaScript, TypeScript, Node.js, React & MUI for 
the UI. My learning experience extends to database 
management, specifically PostgreSQL for data 
persistence. In alignment with the broader project 
lifecycle at IQHQ, my responsibilities involve 
collaborating with cross-functional teams to 

3 
 



translate project requirements into actionable tasks, ensuring the quality, 
performance, and reliability of our software solutions. Through active participation in 
design discussions, coding, testing, and debugging processes, I contribute to 
delivering innovative software solutions that meet the needs of our customers and 
drive the success of our organisation. 

 

Software Development Life Cycle: 

Stages and Inputs/Outputs of the Software Development Life Cycle (SDLC): 

 

Feasibility Study: 

In the feasibility study stage, the project's feasibility is assessed in terms of technical, 
operational, and economic aspects. 

Inputs: Inputs include project proposals, initial requirements, and market analysis. 

Outputs: The main output is a feasibility report that determines whether the project is 
viable and worth pursuing. 

 

Requirement Analysis: 

Requirement analysis involves gathering, documenting, and validating the functional 
and non-functional requirements of the software. 

Inputs: Inputs include stakeholder interviews, user surveys, and existing system 
documentation. 

Outputs: The output is a detailed software requirements specification document 
(SRS) that serves as the basis for the design and development phases. 

 

Design: 

Design involves creating the architectural and detailed designs of the software based 
on the requirements identified in the previous phase. 

Inputs: Inputs include the requirements specification document, design principles, 
and best practices. 

Outputs: Outputs include high-level architectural designs, detailed design 
specifications, database schemas, and user interface mock-ups. 

 

 

 

4 
 



Code Development: 

Code development is the implementation of the software based on the designs 
created in the previous phase. 

Inputs: Inputs include the design documents, programming languages, and coding 
standards. 

Outputs: The primary output is the executable code or software product, along with 
unit test cases and documentation. 

 

Testing: 

Testing involves verifying and validating the functionality, performance, and reliability 
of the software. 

Inputs: Inputs include the software product, test plans, and test cases. 

Outputs: Outputs include test reports, defect logs, and updated documentation. The 
goal is to ensure that the software meets the specified requirements and quality 
standards. 

 

Deployment: 

Deployment is the process of releasing the software to the production environment 
for end-users to access and utilise. 

Inputs: Inputs include the tested and approved software product, deployment plans, 
and user training materials. 

Outputs: Outputs include deployed software instances, configuration settings, user 
manuals, and training records. 

 

Maintenance: 

Maintenance involves ongoing support and enhancement of the deployed software 
to address issues and incorporate new features. 

Inputs: Inputs include user feedback, bug reports, and change requests. 

Outputs: Outputs include software updates, patches, bug fixes, and documentation 
updates. The goal is to ensure the continued functionality, security, and usability of 
the software over time. 

 

 

 

 

5 
 



Software Development Methodologies: 

Agile: 

Agile is a form of an iterative development method, which is a way of breaking down 
the software development life cycle of a large application into small chunks. In 
iterative development, feature code is designed, developed & tested in repeated 
cycles. 

 

Agile allows for more flexibility when it comes to making changes. It is flexible, fast 
and aims for continuous improvements in quality. The agile methodology is a people 
focused, results focused approach to software development in a dynamic world. It is 
centred around adoptive planning, self-organisation & short delivery times. Some 
examples of Agile models include Scrum, Kanban, and XP. 

 

Agile Manifesto: 

▪​ Working software over comprehensive documentation. 

▪​ Customer collaboration over contract negotiation. 

▪​ Responding to change over following a plan. 

▪​ Individuals & interactions over process and tools. 

 

Advantages of Agile: 

Agile is a realistic approach for software development because it doesn't overload 
the project team with unrealistic demands. It enables rapid development and testing 
of functionalities, saving time and resources. Whether the requirements are fixed or 

6 
 



subject to change, Agile adapts well, allowing for early delivery of partially working 
solutions. With minimal planning required, Agile is easy to manage and provides 
flexibility to developers to adjust as needed. Overall, Agile streamlines the 
development process, making it efficient and practical for teams to deliver 
high-quality software products. 

 

Disadvantages of Agile: 

Agile, while advantageous in many respects, presents certain drawbacks. It may not 
handle complex dependencies well and might face difficulties in projects with many 
interconnected parts. This can lead to challenges in managing and coordinating 
various aspects of the development process. Moreover, there's a higher risk 
concerning the sustainability, maintainability, and extensibility of the software created 
under Agile methodologies. To overcome these challenges effectively, a detailed 
overall plan and strong Agile leadership become crucial. Additionally, strict delivery 
management is necessary to ensure that projects stay on track and meet deadlines. 
Furthermore, Agile heavily relies on customer interaction, which, while beneficial for 
understanding needs, can also introduce uncertainties and delays. Lastly, the 
approach often lacks thorough documentation, which can slow down knowledge 
transfer and future development efforts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7 
 



 

Waterfall: 

Waterfall is a step-by-step approach where tasks follow a linear order. Each stage 
must finish before the next one begins. It's known for being well-documented with 
clear requirements that don't change much. The technology used is stable and 
doesn't change often. Waterfall projects usually have a fixed plan and use plenty of 
resources. They also tend to be shorter in duration. 

 

Figure 3 - Waterfall Model 

Advantages of Waterfall: 

Waterfall methodology offers several advantages, including the ability to 
departmentalise tasks and maintain control over the project's progression. By setting 
a schedule with deadlines for each stage, teams can effectively manage their time 
and resources. The strict sequential order of phases simplifies the process, making it 
easy to understand and implement, especially for smaller projects. Additionally, the 
well-defined milestones provide clear checkpoints for progress evaluation. This 
structure makes arranging tasks straightforward, ensuring a systematic and 
organised approach to project development. Overall, the Waterfall methodology 
facilitates efficient project management through its clear structure and manageable 
stages. 

Disadvantages of Waterfall: 

Waterfall methodology also presents several disadvantages. Firstly, because it 
follows a sequential approach, no working software is produced until late in the 
cycle, which can lead to delayed feedback and potential issues with meeting project 
objectives. Additionally, the high amount of risk and uncertainty is inherent in 
Waterfall due to the lack of flexibility to adapt to changing requirements or 
unforeseen challenges. There's limited room for reflection or revision throughout the 
process, making it challenging to address issues as they arise. Moreover, Waterfall is 
not well-suited for complex or object-oriented projects, nor for long-term or ongoing 

8 
 



development models, as it struggles to accommodate dynamic requirements and 
changes over time. Progress measurement within each stage can be difficult. 

Agile & Waterfall Comparison: 

Aspect Agile Waterfall 

Approach Iterative and flexible Sequential and rigid 

Feedback Early and continuous Late and limited 

Risk Management Embraces change and adapts 
easily 

High risk due to inflexible 
structure 

Requirements Dynamic and evolving Fixed and established 

Project Control Collaborative and 
decentralised 

Centralised and 
departmentalised 

Documentation Minimal, focuses on working 
software 

Comprehensive, emphasises 
documentation 

Progress Measurement Iterative, with regular 
checkpoints 

Difficult, mainly at the 
completion of each stage 

Suitable Projects Well-suited for dynamic and 
complex projects 

Better for simpler, 
well-defined projects 

Integration 
Continuous integration 
throughout the project 

Integration at the end of the 
project 

Flexibility Offers flexibility to 
accommodate changes 

Limited flexibility, changes 
may be difficult to implement 

Communication 
Regular communication and 
collaboration 

Less emphasis on continuous 
collaboration 

Time and Resources Efficient use of resources, 
shorter timelines 

Uses ample resources, longer 
timelines 

Adaptability 
Adapts well to changing 
requirements 

Limited adaptability to 
changes during development 

Figure 4 - Agile & Waterfall Comparison Table 

 

 

 

 

 

 

 

 

 

 

9 
 



Software Development Methodology At IQHQ: 

At IQHQ, choosing the right software development methodology is an important part 
of completing our projects. Since each project tends to vary, we must adapt our 
software development methodology to accommodate the unique requirements and 
challenges of each project. While Agile methodologies such as Scrum and Kanban 
offer flexibility and adaptability to changing requirements, the Waterfall methodology 
may be preferred for projects with well-defined and stable requirements. 

For example, in our research and development projects, where the requirements 
may constantly change, we often adopt Agile methodologies to accommodate 
iterative development cycles and frequent feedback from stakeholders. On the other 
hand, for production-focused projects with clearly defined requirements and 
timelines, we turn to the Waterfall methodology to ensure we reach our milestones 
and meet the deadline. 

By carefully evaluating the similarities and differences between different software 
development methodologies, we can tailor our approach to suit the specific needs of 
each project, allowing us to be as efficient as possible and deliver on time. 

 

The Roles Within IQHQ: 

At IQHQ, our software development life cycle is driven by a diverse team of 
professionals, each playing a crucial role in delivering innovative solutions to our 
clients. From project management to technical leadership and software engineering, 
we have various roles that contribute to every stage of our development process. 

 
Managing Director: 

The Managing Director provides strategic direction and leadership for the 
organisation. They set overall goals and priorities, ensuring the effective operation of 
the company. 

 
Project Manager: 

The Project Manager oversees the planning, execution, and delivery of software 
development projects. They define project scope, allocate resources, manage 
budgets, and communicate project status to stakeholders. 

Chief Engineer: 

The Chief Engineer provides technical leadership and guidance for software 
development projects. They define technical standards and best practices, conduct 
design reviews, and mentor junior engineers. 

 
 

10 
 



 Software Team Leader: 

The Software Team Leader manages and coordinates the efforts of the software 
development team. They assign tasks, monitor progress, resolve conflicts, and 
provide technical guidance and support to team members. 

 
Software Engineers: 

Software Engineers design, code, test, and debug software solutions. They translate 
project requirements into software implementations, ensuring the quality, 
performance, and reliability of the final product. 

 

Firmware Team Lead: 

The Firmware Team Lead oversees the development of firmware solutions for 
hardware products. They define firmware requirements, architect firmware solutions, 
and coordinate firmware development efforts with other teams. 

 
Hardware Engineers: 

Hardware Engineers design and develop hardware solutions for products. They 
collaborate closely with software engineers to ensure compatibility and 
interoperability between hardware and software components. 

 
Production Team: 

The Production Team assembles and tests products. While not directly involved in 
software development, they ensure the quality and reliability of the final product 
through rigorous testing and quality control measures. 

 
Quality Assurance Team:  

Our QA team is responsible for ensuring the quality and reliability of our software 
solutions. They develop and execute test plans, identify and report defects, and 
collaborate with software engineers to resolve issues promptly. By maintaining 
rigorous testing standards, they help uphold our commitment to delivering robust and 
error-free software products. 

 

 

 

 

 

 

11 
 



Task 1: Adding Export Functionality to the Dashboard 
 

Situation: 

Throughout Monday and Tuesday of the week, my primary task was to implement an 
export functionality on the dashboard interface at IQHQ. This feature aimed to 
enable the export of database logs to customers post-demonstrations, enhancing our 
product's utility and customer satisfaction. 

 
Task: 

My objective was to integrate an export button into the dashboard UI, allowing users 
to export database logs to their devices. 

 

 

Figure 5 - Dashboard Export Function Task on Teams 

12 
 



Database Planning: 

Before I began this task, it was crucial that I had a good understanding of the 
database structure and management. At IQHQ, we use PostgreSQL, a relational 
database management system (RDBMS), known for its robustness and flexibility. 
Relational databases organise data into tables, each with a predefined schema, and 
use structured query language (SQL) for data manipulation and retrieval. In contrast, 
non-relational databases, like MongoDB or Cassandra, store data in a more flexible 
format, such as JSON documents or key-value pairs. Understanding the differences 
between relational and non-relational databases is essential for choosing the right 
database solution for specific project requirements. If I needed to use an SQL 
database instead of PostgreSQL, I would have followed similar steps but adjusted 
the SQL queries accordingly. 

 

Action: 

My first step was to find out how to export the database using Docker. After 
identifying the relevant image name with the command ‘docker ps’, I researched and 
found the right command to download the database. I utilised the child_process 
module from Node.js to add a file called exportFunction, containing code to 
pg_dumpall the database. Simultaneously, I integrated an export button into the 
dashboard using React components, although it had no functionality initially, logging 
only ‘Button Clicked’. 

 

Figure 6 - Terminal running docker ps. 

13 
 



 

Figure 7 - exportDatabase Function. 

 

Figure 8 - React button logging 'Button Clicked’. 

14 
 



 

Figure 9 - Code for the react export button. 

Issues arose when attempting to export the database, encountering errors while 
viewing the PostgreSQL table in the terminal. Additionally, the child_process module 
functioned exclusively on the server-side, hindering front-end execution. I realised 
each terminal command run created a new Docker container, leading to multiple 
restarting containers. Therefore, I need to implement some sort of filter in my 
exportFunction file that will only use the running container ID. To resolve these 
challenges, I focused on shifting the export function to the backend, collaborating 
with the software team to establish frontend-backend communication. 

By the end of Monday, I was able to manually export the database and view its 
contents. I had added a React button as a placeholder for a function React button to 
export the database. 

On Tuesday, my primary goal was to relocate the exportFunction to the backend. 
With assistance from the software team, I moved the code to a new file called 
ExportFunction.ts. Initially, I encountered difficulties retrieving the correct container 
ID, as multiple containers with the same imageName caused confusion. I created a 
function called getContainerIds, which takes the imageName to return the container 
ID of a running container. 

15 
 



 

Figure 10 - Function that gets the running IDs. 

I was able to take parts of existing code from another file that handled a POST 
request for exporting the database. The route triggered an asynchronous database 
export, ensuring that the database dump was running in the background, 
simultaneously with other processes. 

 

Figure 11 - Route that triggers the database export. 

After speaking with the software team, I realised a potential issue that the user could 
run into was when there were multiple running containers using the same 
imageName. Since the getContainerIds function returned a string of running 
containers, I split the string into a list and changed the exec command so it would 
only use the first item in the list. If more than one running container is found, then 
this issue is logged to let the user know that the wrong running container may be 
being used. I used the alert method to display a warning on the UI if multiple running 
containers were found. 

16 
 



 

Figure 12 - Complete code for database export. 

In the front end, I began by adding a useState from React hook, allowing me to 
change the state of the functional component. I added two functions to handle a 
successful export and an unsuccessful export. If the export was successful, an alert 
was presented on the UI, and vice versa. Within the React button component, if it 
received an HTTPStatus.ok from the ExportFunction, then the program would 
present the successful export message. If it received any errors, then it would 
present an unsuccessful error message. I was also able to move the button out from 
the device view section to the main toolbar. 

17 
 



 

Figure 13 - Handling a successful and unsuccessful database export. 

 

Figure 14 - React button for exporting the database. 

Initially, the ExportFunction file did not work as expected. After some investigation, I 
was able to deduce that the ExportFunction route was not added to the main API 
routes in the index.ts file. This oversight meant that the ExportFunction was not 
recognised or accessible by the application, leading to the failure of the export 

18 
 



process. Therefore, I added the ExportFunction route to the list of API routes in the 
index.ts file. 

 

Figure 15 - Adding the export function route to the list of API routes. 

While working on this task, I ended up having many containers, the majority of which 
were restarting. This was not ideal. I was able to stop and remove all the restarting 
Docker containers manually, and I used pgAdmin to use the PostgreSQL terminal for 
database queries. 

 
 
 
 
 
 
 
 

19 
 



Result: 

After rigorous debugging and refinement, I successfully implemented the export 
button on the dashboard interface. Despite encountering initial challenges with 
database export errors and frontend-backend communication, I managed to 
overcome them through effective problem-solving and collaboration with my peers. 
As a result, the export function works as intended, allowing users to now export the 
database for further analysis. 

 

Figure 16 - UI dashboard with the export database button added. 

20 
 



 

Figure 17 - The result of a successful database export. 

 

Figure 18 - The exported database file in the desktop directory. 

21 
 



 

Figure 19 - The contents of the exported database file. 

Reflection: 

Throughout this task, I acquired valuable insights into database management, 
Docker utilisation, and front-end-backend integration. Working with technologies like 
JavaScript, TypeScript, and React deepened my understanding of frontend 
development, particularly React components and state management. Additionally, 
collaborating with the software team facilitated knowledge exchange and skill 
enhancement, enriching my overall learning experience. 

Although the team was satisfied with my addition of the export feature, there are a 
few improvements I can think of to improve the usability of this feature. Currently the 
exported database is saved to the user's desktop directory on their device; in the 
future it would be more useful for the user to choose where to store the file. There 

22 
 



should also be the option to choose a filename, since saving the export by the date 
is not truly relevant or specific. 

 

Task 2: Waterfall Data Capture 
 

Situation: 

Over the course of three days, from Wednesday, my primary objective was to 
capture waterfall data from one of our radio devices, the SSA and store it in a 
database, aligning with project requirements and enhancing data management 
capabilities. I also had to provide various stats on the data capture process. 

 

Task: 

My objective was to store SSA data into its own table within the database efficiently. 
Provide stats on the data capture process, including the capture rate, an ETA and 
disk usage analysis. I also needed to add a button that would start and stop the data 
capture process. 

23 
 



 

Figure 20 - SSA waterfall data capture task on teams. 

24 
 



 

Figure 21 - Initial planning & requirements for the SSA waterfall data capture. 

 

Action: 

After breaking down the task into manageable steps, I began working on my first 
step, which was to add a table for the SSA metrics into the database. There are four 
main values that need to be recorded in the database table: device ID, time, power & 
frequency. There are eight tables in the dashboard; therefore, I was able to use 
pre-existing code from the other tables to create a table for SSA metrics. After 
several adjustments, I successfully added an SSA metrics table using PostgreSQL 
queries. 

25 
 



 

Figure 22 - File containing the code to set up the PostgreSQL table for ssa_metrics. 

26 
 



 

Figure 23 - File containing the code to set up the PostgreSQL table for ssa_metrics continued 

27 
 



I used pgAdmin to test if the table was created using psql commands, the table was 
successfully added. The next step was to figure out how to add data to the table. I 
added a file called testSSAMetrics, in which I created a function which would add 
sample data to the table. 

 

Figure 24 - Function to test adding sample data to the ssa_metrics table. 

I initially had an issue with the testSSAMetrics function since it was not working as 
intended. After adding logs, it seemed that the function was not being executed in 
the right order. After speaking with my team, I found out the Issue was caused by not 
using an async function. Using a regular function meant that my code was 
preventing other tasks from executing while waiting for asynchronous operations to 
complete. To address this issue, I modified the function responsible for adding test 
data to the PostgreSQL table to be an asynchronous function. This change allows 
the program to continue its execution while waiting for asynchronous operations, 
preventing unnecessary delays. 

My primary goal for Thursday was to find a way to upload the SSA metrics coming 
from the SSA straight into the PostgreSQL table. I was able to locate a file called 
index within the SSA directory, which was initialising the SSA server. I added a 
function called addDataBaseListener to this file, which establishes a WebSocket 

28 
 



connection and adds the SSA metrics to the database using the insertSSAMetrics 
function from the SSAMetrics file. 

 

Figure 25 - Function that established a WebSocket connection and inserts the SSA data into the ssa_metrics table. 

 

I then added this function to the index file within the source directory so that the 
function was executed after all the SSA plugins had been set up. I also had to 
ensure the webSocketInterfacePacket, which serves as a data structure for the SSA 
metrics, was being exported from the WebsocketManager file so it could be used to 
get the SSA data for the SSA index file. 

29 
 



 

Figure 26 - Adding the addDataBaseListener function to the index file. 

 

Figure 27 - Exporting WebSocketInterfacePacket from the WebSocketManager file. 

30 
 



 

 

Currently, the webSocketInterfacePacket does not hold the device ID; instead, it 
uses the stream ID, which is not what is needed according to the project 
requirements. Therefore, I would need to find a way to upload device ID externally or 
by adding it to the data structure; however, that would require a lot of changes 
throughout the whole program since it could affect other areas. 

After some investigation, I found out that with the current rate, there was 28mb of 
data being uploaded per minute; therefore, some steps will need to be taken to 
reduce this amount and make the process more efficient. By changing the data 
types of the database fields. Initially, device ID had the BIGINT data type, which 
meant it was storing eight-byte integers. This was unnecessary since the device ID 
can be stored using INT, which stores four-byte integers. Changing the data type of 
the device ID field reduced the size of the data being uploaded per minute by a few 
MB. 

On Friday, I started by reviewing my approach to ensure it aligned with the project 
requirements. I outlined my next steps, including displaying the upload rate in 
MB/Sec, providing an estimated time of arrival (ETA) to indicate the remaining 
duration for data capture at the current upload rate, and presenting the remaining 
disk space on the device. I also need to add device ID to the database and ensure 
the seamless functionality of the buttons for initiating and stopping the data capture 
process. 

 

Figure 28 - Planning out next steps in teams. 

I created a file called DataCaptureInfo.ts, which will hold functions to calculate the 
various data capture stats. I began by creating a function called getDiskSpace that 
would use the child_process module and the exec command to get the disk space 
in bytes. The function returns the available disk space in gigabytes. I added 
another function called getSSASize that runs a table size query on the 
SSA_metrics table. This function returns the SSA_metrics table size in megabytes. 
My idea behind calculating the capture rate was to constantly add the SSA_metrics 
table size to a list, and once the length of the list reaches a hundred, I would 
calculate the average of the difference between each consecutive item in the list. I 
would use this value to calculate the eta using the formula ETA = available 
space/capture rate. I created the function getDataCaptureRate that would do 
exactly that using the findAverageDifference function that returns the average of 

31 
 



the difference between each consecutive item in a list. The getDataCaptureRate 
function returns a list containing the eta followed by the capture rate. 

 

32 
 



 
Figure 30 - Function to find the data capture rate and ETA. 

 
I had all the values logged for testing purposes to see if setting the list limit to one 
hundred was the right number or whether that number was too high. I made sure to 
place all the relevant functions in the index file so I could view the logs. 

33 
 



 
Figure 31 - Logging the results of the data capture stats. 

 

 
Figure 32 - Initial results of the data capture stats implementation. 

34 
 



After manually checking the capture rate by recording the size of the SSA_metrics 
table before and after a period of time. The capture logged using the getCaptureRate 
function was not always accurate. This makes sense since you would not be viewing 
the live capture rate because, by the time the function returns the average from a list 
of a hundred, the actual capture rate would have changed. A better way to calculate 
the average would be to have two variables, one to hold the values of the previous 
SSA_metrics table size and one that holds the new size. You would also need other 
variables, one to calculate the time of finding the previous table size and a 
timestamp of the new table size. Then, to calculate the live capture rate, you would 
use the formula capture rate = (new table size - old table size) / (new time - old time). 
This would give you a more accurate representation of the capture rate and, 
therefore, a more accurate eta. 

 

Figure 33 - Updated function to find the capture rate and ETA. 

 

 

35 
 



Result: 

As a result of my efforts over the three days, I successfully achieved the objectives 
outlined in the task. I established a robust process for capturing waterfall data from 
the SSA device and storing it efficiently in the database. Additionally, I implemented 
functionalities to provide insightful statistics on the data capture process, including 
the capture rate, an ETA, and disk usage analysis. By addressing issues and refining 
the methods iteratively, such as optimising data types and ensuring asynchronous 
operations, I enhanced the overall efficiency and accuracy of the data capture 
system. Despite encountering challenges along the way, such as inaccuracies in the 
initial capture rate calculations, I implemented a more accurate method for 
calculating the live capture rate. Overall, the project was completed successfully, 
meeting the project requirements and laying a solid foundation for future 
enhancements and optimisations. 

 

 

Figure 34 - Results of the data capture stats implementation. 

 

 

 

36 
 



Reflection: 

In my recent learning journey, I have mastered creating database tables using 
PostgreSQL queries and testing them with tools like pgAdmin. Understanding how to 
structure tables for specific metrics was crucial. I realised the importance of using 
asynchronous functions for tasks like database operations to avoid delays caused by 
synchronous functions. Additionally, I learned how choosing the right data types 
directly impacts efficiency. These experiences gave me practical insights into system 
integration and WebSocket connections with databases. I was able to understand 
the importance of modularity when I began working on the dataCaptureInfo file. I 
tried fitting everything into one function, which led to confusion and decreased the 
readability of the code. By using separate functions, it was easier to read and 
understand the code, and I was able to reuse functions. I was able to explore 
alternative algorithms to find an accurate capture rate. I was also able to exercise my 
knowledge of the child_process module as well as async functions. 
 
There are numerous ways to improve the functionality and efficiency of the current 
data capture process. The user is given the ability to choose the SSA settings 
manually on the dashboard, which directly affects the size of the data received from 
the SSA and being uploaded to the database. To prevent capturing excessive data 
volumes, a warning could be displayed to let the user know that the chosen settings 
could affect the database. A more effective way to manage the capture rate is to 
abstract the data, being received, therefore only storing values which could be 
relevant to the user. Building on this method of data storage, the user could select a 
specific range of data to store rather than storing all incoming data from the SSA.  
 

Conclusion: 

In conclusion, my recent tasks at IQHQ have provided invaluable learning 
experiences in database management, frontend-backend integration, and system 
optimisation. By implementing export functionality on the dashboard interface and 
capturing waterfall data from the SSA device, I expanded my skills in utilising 
technologies like PostgreSQL, Docker, and React, while also gaining insights into 
efficient data storage and retrieval techniques. Through collaboration with colleagues 
and iterative problem-solving, I successfully overcame challenges and delivered 
solutions that met project objectives. Reflecting on these experiences, I recognise 
the importance of modularity in code organisation and the significance of choosing 
the right tools and algorithms for optimal performance. Moving forward, there are 
several opportunities for further enhancements, such as refining the data capture 
processes, providing more user control over data management, and improving data 
visualisation capabilities. Overall, these tasks have not only expanded my technical 
skill set but also deepened my understanding of effective software development 
practices, setting a solid foundation for future projects. 

37 
 


	 
	Introduction: 
	The Company: 
	My Job Role: 
	Software Development Life Cycle: 
	Software Development Methodologies: 
	Agile: 
	Waterfall: 
	Agile & Waterfall Comparison: 

	Software Development Methodology At IQHQ: 
	The Roles Within IQHQ: 
	Task 1: Adding Export Functionality to the Dashboard 
	Situation: 
	Task: 
	Database Planning: 
	Action: 
	Result: 
	Reflection: 

	Task 2: Waterfall Data Capture 
	Situation: 
	Task: 
	Action: 
	Result: 
	Reflection: 

	Conclusion: 

